scholarly journals Switching Coal-Fired Thermal Power Plant to Composite Fuel for Recovering Industrial and Municipal Waste: Combustion Characteristics, Emissions, and Economic Effect

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 259 ◽  
Author(s):  
Dmitrii Glushkov ◽  
Geniy Kuznetsov ◽  
Kristina Paushkina

Combustion characteristics were studied experimentally for single droplets of fuel slurries based on wet coal processing waste with municipal solid waste components (cardboard, plastic, rubber, and wood) and used turbine oil. We established the ignition delay time for three various groups of fuel compositions in motionless air at 600–1000 °C. The minimum values are 3 s, and the maximum ones are 25 s. The maximum temperatures in the droplet vicinity reach 1300 °C during fuel combustion for compositions with 10% of used oil. The combustion temperatures of fuel compositions without oil are 200–300 °C lower. The concentrations of anthropogenic emissions in flue gases do not exceed those from dry coal combustion. Adding used oils to composite fuels reduces the concentrations of dioxins and furans in flue gases when municipal solid waste in the fuel burns out due to high combustion temperatures. Based on the experimental research findings, we have elaborated a strategy of combined industrial and municipal waste recovery by burning it as part of composite fuels, as illustrated by three neighboring regions of the Russian Federation with different industrial structures and levels of social development. This strategy suggests switching three typical coal-fired thermal power plants (one in each of the regions) to composite liquid fuel. It will reduce the hazard of waste to the environment and decrease the consumption of high-quality coals for power generation. Implementing the developed strategy for 25 years will save 145 Mt of coal and recover 190–260 Mt of waste. The positive economic effect, considering the modernization of fuel handling systems at thermal power plants and the construction of a fuel preparation plant, will make up 5.7 to 6.9 billion dollars, or 65–78%, respectively, of the main costs of three thermal power plants operating on coal within the identical period.

2021 ◽  
Vol 134 ◽  
pp. 136-148
Author(s):  
Adib Adnan ◽  
Shadman Mahmud ◽  
Mohammed Raihan Uddin ◽  
Anish Modi ◽  
M. Monjurul Ehsan ◽  
...  

Author(s):  
Vitaly Dmitrik ◽  
Igor Kasyanenko ◽  
Alexandr Krakhmalyov

The authors studied the interrelation between the type of structure and the damage rate of the welded joints of steam pipelines made of the heat-resistant pearlitic steels that were operated for a long time, i.e. more than 270 thousand hours in the conditions of creepage and low-cycle fatigue. The purpose of this research was to establish the interrelation between the structural-&-phase condition of the metal used for welded joints of the elements of steam systems and their damageability rate for the service life of welded joints exceeding 270 thousand hours. During the studies, the methods of optical and electron microscopy were used according to the requirements of the guideline documentation and also the methods that are used for the determination of mechanical properties. The level of their reliability has been substantiated and the residual life has been determined. To impart functional performances to welded joints we used well-known methods that were appropriately emended according to the structural changes of above joints. Such changes condition the conversion of the original structure of welded joints into the ferrite-carbide mixture. The availability of the conversion process of the initial structure on the thermal action zone sections (TAZ) of welded joints has essential distinctions due to a different disposition of metal to its own damageability. On the whole, the welded joints are damaged more intensively in comparison to the basic metal of steam pipelines. The analysis of the structural state of welded joints in the steam pipelines of thermal power plants as for the extension of their service life results in a considerable economic effect. Understanding the fact that the metal deterioration in welded joints adheres mainly to the fragile mechanism we managed to establish the level of their damageability that demands the renewal of damaged welded joints. We believe that the damageability level of welded joints that tots up to 0.25 or 0.35 of the volume of their TAZ section should be considered as critical for the service life exceeding 270 thousand hours. The damaged welded joints should be renewed throughout the time period of 15 to 20 thousand hours as soon as the specified damageability level is attained.


1996 ◽  
Vol 75 (8) ◽  
pp. 732-741 ◽  
Author(s):  
Mutsuo YAMADA ◽  
Kazumi MURAKAMI ◽  
Naoki ODA ◽  
Akira MORI ◽  
Makoto NISHIMURA ◽  
...  

2019 ◽  
Vol 140 ◽  
pp. 10001
Author(s):  
Vitaliy Sergeyev ◽  
Irina Anikina ◽  
Konstantin Kalmykov ◽  
Ivan Naletov

Prospects for increasing the efficiency of heat and electric energy-generation and heat-and-power supply at thermal power plants obviously draw attention to such modern and innovative technologies as heat pumps. Heat pumps allow efficient redistribution of energy flows. The abundance of low-potential heat carriers and heat sources in the cycle arrangement of the thermal power plants operation requires modernization of production and increase of the fuel heat utilization factor, therefore, reduction of specific fuel consumption for the production of heat and electricity. This paper analyzes the influence and practicability of introducing heat pumps into the heating circuit of the return water of the heat network of power units with PT-80 and T-250 turbines. Heat pumps of various configurations provide invariant energy conversion factor and efficiency. To assess energy and economic efficiency, modeling of the operation of power units and calculation of heat pump circuits for various refrigerants are performed. The economic effect is represented in quarterly cash savings of operating costs.


Sign in / Sign up

Export Citation Format

Share Document