scholarly journals A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1046
Author(s):  
Xavier Serrano-Guerrero ◽  
Guillermo Escrivá-Escrivá ◽  
Santiago Luna-Romero ◽  
Jean-Michel Clairand

Electricity consumption patterns reveal energy demand behaviors and enable strategY implementation to increase efficiency using monitoring systems. However, incorrect patterns can be obtained when the time-series components of electricity demand are not considered. Hence, this research proposes a new method for handling time-series components that significantly improves the ability to obtain patterns and detect anomalies in electrical consumption profiles. Patterns are found using the proposed method and two widespread methods for handling the time-series components, in order to compare the results. Through this study, the conditions that electricity demand data must meet for making the time-series analysis useful are established. Finally, one year of real electricity consumption is analyzed for two different cases to evaluate the effect of time-series treatment in the detection of anomalies. The proposed method differentiates between periods of high or low energy demand, identifying contextual anomalies. The results indicate that it is possible to reduce time and effort involved in data analysis, and improve the reliability of monitoring systems, without adding complex procedures.

Author(s):  
Yue Pang ◽  
Bo Yao ◽  
Xiangdong Zhou ◽  
Yong Zhang ◽  
Yiming Xu ◽  
...  

Electricity demand forecasting is a very important problem for energy supply and environmental protection. It can be formalized as a hierarchical time series forecasting problem with the aggregation constraints according to the geographical hierarchy, since the sum of the prediction results of the disaggregated time series should be equal to the prediction results of the aggregated ones. However in most previous work, the aggregation consistency is ensured at the loss of forecast accuracy. In this paper, we propose a novel clustering-based hierarchical electricity time series forecasting approach. Instead of dealing with the geographical hierarchy directly, we explore electricity consumption patterns by clustering analysis and build a new consumption pattern based time series hierarchy. We then present a novel hierarchical forecasting method with consumption hierarchical aggregation constraints to improve the electricity demand predictions of the bottom level, followed by a ``bottom-up" method to obtain forecasts of the geographical higher levels. Especially, we observe that in our consumption pattern based hierarchy the reconciliation error of the bottom level time series is ``correlated" to its membership degree of the corresponding cluster (consumption pattern), and hence apply this correlations as the regularization term in our forecasting objective function. Extensive experiments on real-life datasets verify that our approach achieves the best prediction accuracy, compared with the state-of-the-art methods.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3996 ◽  
Author(s):  
Marwen Elkamel ◽  
Lily Schleider ◽  
Eduardo L. Pasiliao ◽  
Ali Diabat ◽  
Qipeng P. Zheng

Predicting future energy demand will allow for better planning and operation of electricity providers. Suppliers will have an idea of what they need to prepare for, thereby preventing over and under-production. This can save money and make the energy industry more efficient. We applied a multiple regression model and three Convolutional Neural Networks (CNNs) in order to predict Florida’s future electricity use. The multiple regression model was a time series model that included all the variables and employed a regression equation. The univariant CNN only accounts for the energy consumption variable. The multichannel network takes into account all the time series variables. The multihead network created a CNN model for each of the variables and then combined them through concatenation. For all of the models, the dataset was split up into training and testing data so the predictions could be compared to the actual values in order to avoid overfitting and to provide an unbiased estimate of model accuracy. Historical data from January 2010 to December 2017 were used. The results for the multiple regression model concluded that the variables month, Cooling Degree Days, Heating Degree Days and GDP were significant in predicting future electricity demand. Other multiple regression models were formulated that utilized other variables that were correlated to the variables in the best-selected model. These variables included: number of visitors to the state, population, number of consumers and number of households. For the CNNs, the univariant predictions had more diverse and higher Root Mean Squared Error (RMSE) values compared to the multichannel and multihead network. The multichannel network performed the best out of the three CNNs. In summary, the multichannel model was found to be the best at predicting future electricity demand out of all the models considered, including the regression model based on the datasets employed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Timothy King Avordeh ◽  
Samuel Gyamfi ◽  
Alex Akwasi Opoku

Purpose The purpose of this paper is to investigate the impact of temperature on residential electricity demand in the city of Greater Accra, Ghana. It is believed that the increasing trend of temperatures may significantly affect people’s lives and demand for electricity from the national grid. Given the recurrent electricity crisis in Ghana, this study will investigate both the current and future residential energy demands in the light of temperature fluctuations. This will inform future power generation using renewable energy resources mix to find a sustainable solution to the recurrent energy demand challenges in Ghana. This study will help the Government of Ghana to better understand the temperature dependence of residential energy demand, which in turn will help in developing behavioral modification programs aimed at reducing energy consumption. Monthly data for the temperature and residential electricity consumption for Greater Accra Region from January 2007 to December 2018 obtained from the Ghana Meteorological Service (GMS) and Ghana Grid Company (Gridco), respectively, are used for the analysis. Design/methodology/approach This study used monthly time series data from 2007 to 2018. Data on monthly electricity demand and temperature are obtained from the Ghana Grid Company and GMS. The theoretical framework for residential electricity consumption, the log-linear demand equation and time series regression approaches was used for this study. To demonstrate certain desirable properties and to produce good estimators in this study, an analysis technique of ordinary least squares measurement was also applied. Findings This study showed an impact on residential electricity requirements in the selected regions of Greater Accra owing to temperature change. The analysis suggests a substantial positive response to an increase in temperature demand for residential electricity and thus indicates a growth of the region’s demand for electricity in the future because of temperature changes. As this analysis projects, the growth in the electricity demand seems too small for concern, perhaps because of the incoherence of the mechanisms used to regulate the temperature by the residents. However, two points should be considered when drawing any conclusions even in the case of Greater Accra alone. First, the growth in the demand for electricity shown in the present study is the growth of demand due only to increasing temperatures that do not consider changes in all the other factors driving the growth of demand. The electricity demand will in the future increase beyond what is induced by temperature, due to increasing demand, population and mechanization and other socioeconomic factors. Second, power consumption understated genuine electricity demand, owing to the massive shedding of loads (Dumsor) which occurred in Ghana from 2012 to 2015 in the analysis period that also applies in the Greater Accra region. Given both of these factors, the growth in demand for electricity is set to increase in response to climate change, which draws on the authorities to prepare more critically on capacity building which loads balancing. The results also revealed that monthly total residential electricity consumption, particularly the monthly peak electricity consumption in the city of Accra is highly sensitive to temperature. Therefore, the rise in temperature under different climate change scenarios would have a high impact on residential electricity consumption. This study reveals that the monthly total residential electricity demand in Greater Accra will increase by up to 3.1%. Research limitations/implications The research data was largely restricted to only one region in Ghana because of the inconsistencies in the data from the other regions. The only climate variable use was temperature because it was proven in the literature that it was the most dominant variable that affects electricity demand, so it was not out of place to use only this variable. The research, however, can be extended to capture the entire regions of the country if sponsorship and accurate data can be obtained. Practical implications The government as the policy and law-making authority has to play the most influential role to ensure adaptation at all levels toward the impact of climate change for residential consumers. It is the main responsibility of the government to arrange enough supports to help residential consumers adapt to climate change and try to make consumers self-sufficient by modification of certain behaviors rather than supply dependent. Government bodies need to carefully define their climate adaptation supports and incentive programs to influence residential-level consumption practices and demand management. Here, energy policies and investments need to be more strategic. The most critical problem is to identify the appropriate adaptation policies that favor the most vulnerable sectors such as the residential sector. Social implications To evaluate both mitigation and adaptation policies, it is important to estimate the effect of climate change on energy usage around the world. Existing empirical figures, however, are concentrated in Western nations, especially the USA. To predict how electricity usage will shift in the city of Greater Accra, Ghana, the authors used regular household electricity consumption data. Originality/value The motivation for this paper and in particular the empirical analysis for Ghana is originality for the literature. This paper demonstrates an adequate understanding of the relevant literature in modern times.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Carlos Gaete-Morales ◽  
Hendrik Kramer ◽  
Wolf-Peter Schill ◽  
Alexander Zerrahn

AbstractThere is substantial research interest in how future fleets of battery-electric vehicles will interact with the power sector. Various types of energy models are used for respective analyses. They depend on meaningful input parameters, in particular time series of vehicle mobility, driving electricity consumption, grid availability, or grid electricity demand. As the availability of such data is highly limited, we introduce the open-source tool emobpy. Based on mobility statistics, physical properties of battery-electric vehicles, and other customizable assumptions, it derives time series data that can readily be used in a wide range of model applications. For an illustration, we create and characterize 200 vehicle profiles for Germany. Depending on the hour of the day, a fleet of one million vehicles has a median grid availability between 5 and 7 gigawatts, as vehicles are parking most of the time. Four exemplary grid electricity demand time series illustrate the smoothing effect of balanced charging strategies.


2021 ◽  
Vol 13 (22) ◽  
pp. 12493
Author(s):  
Namrye Son

Electricity demand forecasting enables the stable operation of electric power systems and reduces electric power consumption. Previous studies have predicted electricity demand through a correlation analysis between power consumption and weather data; however, this analysis does not consider the influence of various factors on power consumption, such as industrial activities, economic factors, power horizon, and resident living patterns of buildings. This study proposes an efficient power demand prediction using deep learning techniques for two industrial buildings with different power consumption patterns. The problems are presented by analyzing the correlation between the power consumption and weather data by season for industrial buildings with different power consumption patterns. Four models were analyzed using the most important factors for predicting power consumption and weather data (temperature, humidity, sunlight, solar radiation, total cloud cover, wind speed, wind direction, humidity, and vapor pressure). The prediction horizon for power consumption forecasting was kept at 24 h. The existing deep learning methods (DNN, RNN, CNN, and LSTM) cannot accurately predict power consumption when it increases or decreases rapidly. Hence, a method to reduce this prediction error is proposed. DNN, RNN, and LSTM were superior when using two-year electricity consumption rather than one-year electricity consumption and weather data.


2018 ◽  
Vol 12 (3) ◽  
pp. 426-439 ◽  
Author(s):  
Seiya Maki ◽  
Shuichi Ashina ◽  
Minoru Fujii ◽  
Tsuyoshi Fujita ◽  
Norio Yabe ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1895 ◽  
Author(s):  
Swantje Sundt ◽  
Katrin Rehdanz ◽  
Jürgen Meyerhoff

Time-of-use (TOU) electricity tariffs represent an instrument for demand side management. By reducing energy demand during peak times, less investments in otherwise necessary, costly, and CO2 intensive redispatch would be required. We use a choice experiment (CE) to analyze private consumers’ acceptance of TOU tariffs in Germany. In our CE, respondents choose between a fixed rate tariff and two TOU tariffs that differ by peak time scheme and by a control of appliances’ electricity consumption during that time. We use a mixed logit model to account for taste heterogeneity. Moreover, investigating decision strategies, we identify three different strategies that shed light on drivers of unobserved taste heterogeneity: (1) Always choosing the status quo, (2) always choosing the maximum discount, and (3) choosing a TOU tariff but not always going for the maximum discount. Overall, about 70% of our 1398 respondents would choose a TOU tariff and shift their electricity demand, leading to a decline in energy demand during peak times. Rough estimates indicate that this would lead to significant savings in electricity generation, avoiding up to a mid to large-sized fossil-fuel power plant.


Sign in / Sign up

Export Citation Format

Share Document