scholarly journals Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2724 ◽  
Author(s):  
Sara Rajabi Hamedani ◽  
Mauro Villarini ◽  
Andrea Colantoni ◽  
Maurizio Carlini ◽  
Massimo Cecchini ◽  
...  

Italian power generation through anaerobic digestion (AD) has grown significantly between 2009 and 2016, becoming an important renewable energy resource for the country, also thanks to the generous incentives for produced electricity available in the last years. This work focuses on the economic and environmental issues of AD technology and proposes a techno-economic analysis of investment profitability without government support. In particular, the analysis focuses on an AD power plant fed by zootechnical wastewater and agro-industrial residues coupled to a cogeneration (CHP) system and a digestate-composting plant that produces soil fertilizers. We aim to determine the economic profitability of such AD power plants fed by inner-farm biomass wastes, exploiting digestate as fertilizer, using the cogenerated heat and taking into account the externalities (environmental benefits). Environmental analysis was carried out via a life cycle analysis (LCA), and encompassing the production of biogas, heat/electricity and compost in the downstream process. The un-released environmental emissions were converted into economic benefits by means of a stepwise approach. The results indicate that integrating a compost plant with a biogas plant can significantly increase the carbon credits of the process. The results were evaluated by means of a sensitivity analysis, and they report an IRR in the range of 6%–9% according to the Italian legislative support mechanisms, and possibilities to increase revenues with the use of digestate as fertilizer. The results significantly improve when externalities are included.

Author(s):  
Ö.F. Yildiz ◽  
M. Yılmaz

The use of photovoltaic power plants is gradually increasing in order to reduce energy costs and greenhouse gas emissions at airports. Airports are suitable settlements for the installation of photovoltaic power plants as they have vast and free of shade areas that are not used in aviation activities. In this study, a 1 MWp photovoltaic power plant is proposed for Gaziantep Airport, Turkey. Performance, economic and environmental benefits of the proposed system were analyzed using the PVsyst simulation tool developed by the University of Geneva in Switzerland. The study demonstrates that Gaziantep Airport is suitable to installation of a grid-connected photovoltaic system and has a high solar energy resource. The proposed photovoltaic power plant at Gaziantep Airport is predicted to operate with an annual electricity generation of 1702.09 MWh, 78.6 % annual average performance ratio (PR), 19.43 % average capacity factor (CF) and 4.67 [h/d] annual average daily final yield.


2018 ◽  
Vol 177 ◽  
pp. 01001 ◽  
Author(s):  
Maciej Cholewiński

In this work the environmental benefits in the atmospheric emissions after the implementation of 3,000 MW nuclear power plants were assessed and presented. To determine the quantity of avoided emissions of CO2, NOx, SO2 and Hg compounds, harmonised stoichiometric combustion model dedicated to solid fuel fired power plant was created. To increase the credibility of the studies, future strict emission standards (Directive 2010/75/EU, BAT documents for LCP) were included as well. In conducted studies, representative samples of 3 different Polish solid fuels were examined (by comprehensive proximate and ultimate analysis) and used in assessment. It was proven that by the replacement of thermal solid fuel power plant by nuclear unit (with annual production rate of 22.4 TWh net) up to 16.4 million tonnes of lignite, 8.9 million tonnes of hard coal or 13.1 million tonnes of solid biomass can be saved. Further, for the case of lignite, the emission, at least, of 21.29 million tonnes of CO2 (6.9% of all Polish emission in 2015), 1,610 tonnes of dust (0.4%), 16,102 tonnes of NOx (2.2%), 16,102 tonnes of SO2 (2.0%) and 564 kg of mercury (5.9%) can be avoided. For selected hard coal, calculated emission savings were equal to 17.60 million tonnes of CO2 (5.7%), 1,357 tonnes of dust (0.4%), 13,566 tonnes of NOx (1.9%), 13,566 tonnes of SO2 (1.7%), 271 kg of mercury (2.9%), and for biomass - equal to 20.04 million tonnes of CO2 (6.5%), 1,471 tonnes of dust (0.4%), 14,712 tonnes of NOx (2.0%), 14,712 tonnes of SO2 (1.8%) and 294 kg of mercury (3.1%).


Author(s):  
Roger H Bezdek ◽  

This paper assesses the relative economic and jobs benefits of retrofitting an 847 MW USA coal power plant with carbon capture, utilization, and storage (CCUS) technology compared to replacing the plant with renewable (RE) energy and battery storage. The research had two major objectives: 1) Estimate the relative environmental, economic, and jobs impacts of CCUS retrofit of the coal plant compared to its replacement by the RE scenario; 2) develop metrics that can be used to compare the jobs impacts of coal fueled power plants to those of renewable energy. The hypotheses tested are: 1) The RE option will reduce CO2 emissions more than the CCUS option. We reject this hypothesis: We found that the CCUS option will reduce CO2 emissions more than the RE option. 2) The RE option will generate greater economic benefits than the CCUS option. We reject this hypothesis: We found that the CCUS option will create greater economic and jobs benefits than the RE option. 3) The RE option will create more jobs per MW than the CCUS option. We reject this hypothesis: We found that the CCUS option will create more jobs per MW more than the RE option. We discuss the implications of these findings.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5384 ◽  
Author(s):  
Mingwei Yan ◽  
Yuetao Shi

Compared with limestone-based wet flue gas desulfurization (WFGD), magnesia-based WFGD has many advantages, but it is not popular in China, due to the lack of good wastewater treatment schemes. This paper proposes the wastewater treatment scheme of selling magnesium sulfate concentrate, and makes thermal and economic analysis for different concentration systems in the scheme. Comparisons of different concentration systems for 300 MW power plant were made to determine which system is the best. The results show that the parallel-feed benchmark system is better than the forward-feed benchmark system, and the parallel-feed optimization system with the 7-process is better than other parallel-feed optimization systems. Analyses of the parallel-feed optimization system with 7-process were made in 300, 600, and 1000 MW power plants. The results show that the annual profit of concentration system for a 300, 600, and 1000 MW power plant is about 2.58 million, 5.35 million, and 7.89 million Chinese Yuan (CNY), respectively. In different concentration systems of the scheme for selling magnesium sulfate concentrate, the parallel-feed optimization system with the 7-process has the best performance. The scheme can make a good profit in 300, 600, and 1000 MW power plants, and it is very helpful for promoting magnesia-based WFGD in China.


Author(s):  
Xing L. Yan ◽  
Lawrence M. Lidsky

High generating efficiency has compelling economic and environmental benefits for electric power plants. There are particular incentives to develop more efficient and cleaner coal-fired power plants, to permit use of the world’s most abundant and secure energy source. This paper presents a newly-conceived power plant design, the Dual Brayton Cycle Gas Turbine PFBC, that yields 45% net generating efficiency and fires on a wide range of fuels with minimum pollution, of which coal is a particularly intriguing target for its first application. The DBC-GT design allows power plants based on the state-of-the-art PFBC technology to achieve substantially higher generating efficiencies while simultaneously providing modern gas turbine and related heat exchanger technologies access to the large coal power generation market.


1998 ◽  
Vol 120 (3) ◽  
pp. 566-572 ◽  
Author(s):  
X. L. Yan ◽  
L. M. Lidsky

High generating efficiency has compelling economic and environmental benefits for electric power plants. There are particular incentives to develop more efficient and cleaner coal-fired power plants in order to permit use of the world’s most abundant and secure energy source. This paper presents a newly conceived power plant design, the Dual Brayton Cycle Gas Turbine PFBC, that yields 45 percent net generating efficiency and fires on a wide range of fuels with minimum pollution, of which coal is a particularly intriguing target for its first application. The DBC-GT design allows power plants based on the state-of-the-art PFBC technology to achieve substantially higher generating efficiencies, while simultaneously providing modern gas turbine and related heat exchanger technologies access to the large coal power generation market.


2014 ◽  
Vol 1070-1072 ◽  
pp. 343-346
Author(s):  
Zeng Hong Xiao ◽  
Xing Lu Hua

As wind power integration is scaled up year by year, the problem of abandoned wind electricity has become increasingly severe, and thus caused serious waste of energy. To solve the problem of abandoned wind electricity, this paper tries to heat power plant’s back water in electric boiler to absorb abandoned wind electricity. Taking a thermal power plant for example, the application of electric boiler in backwater system can bring great economic benefits and environmental benefits, and provide a reasonable way and solution for the use of abandoned wind electricity.


Author(s):  
Mohamed Gadalla ◽  
Nabil Al Aid

In this study, a complete economic analysis of integrating different types of fuel cells in Gas Turbine power plants is conducted. The paper investigates the performance of a hybrid system that comprises of a SOFC (Solid-Oxide-Fuel-Cell), a PEMFC (polymer electrolyte membrane fuel Cell), and SOFC-PEMFC which is/are integrated into a Gas Turbine power plant. Detailed modeling, thermodynamic, kinetic, geometric models are developed, implemented and validated for the synthesis/design and operational analysis of the combined hybrid system. The economic analysis is considered to be the basic concepts for thermo-economic optimization of the power plant under investigation, with the aim of finding the optimum set of design/operating parameters. Moreover, one of the aims of this paper is to present a detailed economic analysis of a highly coupled PEMFC-SOFC–GT hybrid plant, paying special attention to the sources of inefficiency and analyzing their variations with respect to changes in their operational parameters.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2018 ◽  
Author(s):  
Thriveni Thenepalli ◽  
Nguyen Ngoc ◽  
Lai Tuan ◽  
Trinh Son ◽  
Ho Hieu ◽  
...  

Annually, coal-fired power plants in Vietnam discharge hundreds of thousand tons of coal ash. Most of this ash goes into the environment without treatment or any plan for the efficient reuse of this precious resource. There are many reasons for this, such as poor quality of the ash, no suitable and feasible ash treatment technology, a lack of awareness about environmental pollution and resource saving, and inappropriate sanctions and policies. This study analyzed and summarized information and data pertaining to the current status of the production, discharge, and utilization of coal ash from the Cao Ngan Power Plant (CNPP) in Thai Nguyen Province, Vietnam. In addition, the potential for applying advanced emission reduction technologies in order to recycle coal ash for cement production, as well as geographical, socio-economic, and market factors were assessed. This paper reveals the results of a preliminary assessment of carbon-mineralization technologies which seek to achieve the following three goals: (1) effectively disposing of coal ash to protect the environment and local community, (2) contributing to the nationally determined effort to mitigate greenhouse gas emissions which cause climate change, and (3) making value-added products and bringing economic benefits to a sustainable society.


2014 ◽  
Vol 508 ◽  
pp. 312-315 ◽  
Author(s):  
Hui Li ◽  
Jing Long Liang

Water saving in power plant is mainly manifested in the use of less water system technology and recycling use of water in two aspects. Based on the typical thermal power plant water analysis, summarizes the main water links, and according to the characteristics of each stage, and puts forward the corresponding water-saving scheme. On the other hand, through some effective physical chemical methods, can improve water quality, so as to achieve some technology requirements, in order to achieve water recycling. By adopting a practical solution, final implementation economic benefits, social benefits and environmental benefits of unity.


Sign in / Sign up

Export Citation Format

Share Document