scholarly journals Formation and Continuation of Thermal Energy Community Systems: An Explorative Agent-Based Model for the Netherlands

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2829 ◽  
Author(s):  
Javanshir Fouladvand ◽  
Niek Mouter ◽  
Amineh Ghorbani ◽  
Paulien Herder

Energy communities are key elements in the energy transition at the local level as they aim to generate and distribute energy based on renewable energy technologies locally. The literature on community energy systems is dominated by the study of electricity systems. Yet, thermal energy applications cover 75% of the total energy consumption in households and small businesses. Community-driven initiatives for local generation and distribution of thermal energy, however, remain largely unaddressed in the literature. Since thermal energy communities are relatively new in the energy transition discussions, it is important to have a better understanding of thermal energy community systems and how these systems function. The starting point of this understanding is to study factors that influence the formation and continuation of thermal energy communities. To work towards this aim, an abstract agent-based model has been developed that explores four seemingly trivial factors, namely: neighborhood size, minimum member requirement, satisfaction factor and drop-out factor. Our preliminary modelling results indicate correlations between thermal community formation and the ’formation capability’ (the percentage of households that joined) and with the satisfaction of households. No relation was found with the size of the community (in terms of number of households) or with the ‘drop-out factor’ (individual households that quit after the contract time).

2017 ◽  
Vol 46 (3) ◽  
pp. 469-489
Author(s):  
Cheng Guo ◽  
Carsten M Buchmann ◽  
Nina Schwarz

Urban sprawl and income segregation are two undesired urban patterns that occur during urban development. Empirical studies show that income level and inequality are positively correlated with urban sprawl and income segregation, respectively. However, the relationship between urban sprawl and income segregation is not only rarely investigated but also shows ambiguous empirical results when it is. Therefore, in this study, we built a stylized agent-based model with individual behaviours based on Alonso’s bid rent theory and ran simulations with different combinations of income level and income inequality. We measured the overall emergent patterns with indicators for urban sprawl and income segregation. The model confirms the established positive correlations between income level and urban sprawl and between income inequality and segregation. Furthermore, the model shows a negative correlation between urban sprawl and income segregation under free market conditions. The model indicates that without any policy implementation, a city will either suffer from urban sprawl or income segregation. Thus, this study serves as a starting point to study the effects of different urban planning policies on these two urban problems.


2020 ◽  
Author(s):  
Ernie Chang ◽  
Kenneth A. Moselle ◽  
Ashlin Richardson

ABSTRACTThe agent-based model CovidSIMVL (github.com/ecsendmail/MultiverseContagion) is employed in this paper to delineate different network structures of transmission chains in simulated COVID-19 epidemics, where initial parameters are set to approximate spread from a single transmission source, and R0ranges between 1.5 and 2.5.The resulting Transmission Trees are characterized by breadth, depth and generations needed to reach a target of 50% infected from a starting population of 100, or self-extinction prior to reaching that target. Metrics reflecting efficiency of an epidemic relate closely to topology of the trees.It can be shown that the notion of superspreading individuals may be a statistical artefact of Transmission Tree growth, while superspreader events can be readily simulated with appropriate parameter settings. The potential use of contact tracing data to identify chain length and shared paths is explored as a measure of epidemic progression. This characterization of epidemics in terms of topological characteristics of Transmission Trees may complement equation-based models that work from rates of infection. By constructing measures of efficiency of spread based on Transmission Tree topology and distribution, rather than rates of infection over time, the agent-based approach may provide a method to characterize and project risks associated with collections of transmission events, most notably at relatively early epidemic stages, when rates are low and equation-based approaches are challenged in their capacity to describe or predict.MOTIVATION – MODELS KEYED TO CONTEMPLATED DECISIONSOutcomes are altered by changing the processes that determine them. If we wish to alter contagion-based spread of infection as reflected in curves that characterize changes in transmission rates over time, we must intervene at the level of the processes that are directly involved in preventing viral spread. If we are going to employ models to evaluate different candidate arrays of localized preventive policies, those models must be posed at the same level of granularity as the entities (people enacting processes) to which preventive measures will be applied. As well, the models must be able to represent the transmission-relevant dynamics of the systems to which policies could be applied. Further, the parameters that govern dynamics within the models must embody the actions that are prescribed/proscribed by the preventive measures that are contemplated. If all of those conditions are met, then at a formal or structural level, the models are conformant with the provisions of the Law of Requisite Variety1 or the restated version of that law – the good regulator theorem.2On a more logistical or practical level, the models must yield summary measures that are responsive to changes in key parameters, highlight the dynamics, quantify outcomes associated with the dynamics, and communicate that information in a form that can be understood correctly by parties who are adjudicating on policy options.If the models meet formal/structural requirements regarding requisite variety, and the parameters have a plausible interpretation in relationship to real-world situations, and the metrics do not overly-distort the data contents that they summarize, then the models provide information that is directly relevant to decision-making processes. Models that meet these requirements will minimize the gap that separates models from decisions, a gap that will otherwise be filled by considerations other than the data used to create the models (for equation-based models) or the data generated by the simulations.In this work, we present an agent-based model that targets information requirements of decision-makers who are setting policy at a local level, or translate population level directives to local entities and operations. We employ an agent-based modeling approach, which enables us to generate simulations that respond directly to the requirements of the good regulator theorem. Transmission events take place within a spatio-temporal frame of reference in this model, and rates are not conditioned by a reproduction rate (R0) that is specified a priori. Events are a function of movement and proximity. To summarize dynamics and associated outcomes of simulated epidemics, we employ metrics reflecting topological structure of transmission chains, and distributions of those structures. These measures point directly to dynamic features of simulated outbreaks, they operationalize the “efficiency” construct, and they are responsive to changes in parameters that govern dynamics of the simulations.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 856 ◽  
Author(s):  
Graciela Nava Guerrero ◽  
Gijsbert Korevaar ◽  
Helle Hansen ◽  
Zofia Lukszo

To reduce greenhouse gas emissions to 80% below 1990 levels by 2050, an energy transition is taking place in the European Union. Achieving these targets requires changes in the heating and cooling sector (H&C). Designing and implementing this energy transition is not trivial, as technology, actors, and institutions interact in complex ways. We provide an illustrative example of the development and use of an agent-based model (ABM) for thermal energy transitions in the built environment, from the perspective of sociotechnical systems (STS) and complex adaptive systems (CAS). In our illustrative example, we studied the transition of a simplified residential neighborhood to heating without natural gas. We used the ABM to explore socioeconomic conditions that could support the neighborhoods’ transition over 20 years while meeting the neighborhoods’ heat demand. Our illustrative example showed that through the use of STS, CAS, and an ABM, we can account for technology, actors, institutions, and their interactions while designing for thermal energy transitions in the built environment.


2017 ◽  
Author(s):  
Martijn Schoonvelde

This paper presents an agent-based model (ABM) that shows that variation in voter knowledge can in part be driven by competition among media outlets. Using a set of simple behavioral rules implemented by voters, parties and media outlets, the model predicts that stronger media competition increases political knowledge of quality-minded voters vis-a-vis motivated reasoners although aggregate differences are small. This is because these voters are most likely to consume news even when it is of low quality. Not only do these results contribute to a larger (empirical) debate about media competition and political knowledge, but the model also serves as a theoretical starting point for exploring these patterns further.


2020 ◽  
Author(s):  
Alessio Staffini ◽  
Akiko Kishi Svensson ◽  
Ung-Il Chung ◽  
Thomas Svensson

BACKGROUND The spread of SARS-CoV-2, originating in Wuhan, China, was classified as a pandemic by the World Health Organization on March 11, 2020. The governments of affected countries have implemented various measures to limit the spread of the virus. The starting point of this paper is the different government approaches, in terms of promulgating new legislative regulations to limit the virus diffusion and to contain negative effects on the populations. OBJECTIVE This paper aims to study how the spread of SARS-CoV-2 is linked to government policies and to analyze how different policies have produced different results on public health. METHODS Considering the official data provided by 4 countries (Italy, Germany, Sweden, and Brazil) and from the measures implemented by each government, we built an agent-based model to study the effects that these measures will have over time on different variables such as the total number of COVID-19 cases, intensive care unit (ICU) bed occupancy rates, and recovery and case-fatality rates. The model we implemented provides the possibility of modifying some starting variables, and it was thus possible to study the effects that some policies (eg, keeping the national borders closed or increasing the ICU beds) would have had on the spread of the infection. RESULTS The 4 considered countries have adopted different containment measures for COVID-19, and the forecasts provided by the model for the considered variables have given different results. Italy and Germany seem to be able to limit the spread of the infection and any eventual second wave, while Sweden and Brazil do not seem to have the situation under control. This situation is also reflected in the forecasts of pressure on the National Health Services, which see Sweden and Brazil with a high occupancy rate of ICU beds in the coming months, with a consequent high number of deaths. CONCLUSIONS In line with what we expected, the obtained results showed that the countries that have taken restrictive measures in terms of limiting the population mobility have managed more successfully than others to contain the spread of COVID-19. Moreover, the model demonstrated that herd immunity cannot be reached even in countries that have relied on a strategy without strict containment measures.


Author(s):  
Jouni T. Tuomisto ◽  
Juha Yrjölä ◽  
Mikko Kolehmainen ◽  
Juhani Bonsdorff ◽  
Jami Pekkanen ◽  
...  

AbstractBackgroundCountries have adopted disparate policies in tackling the COVID-19 coronavirus pandemic. For example, South Korea started a vigorous campaign to suppress the virus by testing patients with respiratory symptoms and tracing and isolating all their contacts, and many European countries are trying to slow down the spread of the virus with varying degrees of shutdowns. There is clearly a need for a model that can realistically simulate different policy actions and their impacts on the disease and health care capacity in a country or a region. Specifically, there is a need to identify destructive policies, i.e. policies that are, based on scientific knowledge, worse than an alternative and should not be implemented.MethodsWe developed an agent-based model (REINA) using Python and accelerated it by the Cython optimising static compiler. It follows a population over time at individual level at different stages of the disease and estimates the number of patients in hospitals and in intensive care. It estimates death rates and counts based on the treatment available. Any number of interventions can be added on the timeline from a selection including e.g. physical isolation, testing and tracing, and controlling the amount of cases entering the area. The model has open source code and runs online.ResultsThe model uses the demographics of the Helsinki University Hospital region (1.6 million inhabitants). A mitigation strategy aims to slow down the spread of the epidemic to maintain the hospital capacity by implementing mobility restrictions. A suppression strategy initially consists of the same restrictions but also aggressive testing, tracing, and isolating all coronavirus positive patients and their contacts. The modelling starting point is 2020-02-18. The strategies follow the actual situation until 2020-04-06 and then diverge. The default mitigation scenario with variable 30–40% mobility reduction appears to delay the peak of the epidemic (as intended) but not suppress the disease. In the suppression strategy, active testing and tracing of patients with symptoms and their contacts is implemented in addition to 20–25% mobility reduction. This results in a reduction of the cumulative number of infected individuals from 820 000 to 80 000 and the number of deaths from 6000 to only 640, when compared with the mitigation strategy (during the first year of the epidemic).DiscussionThe agent-based model (REINA) can be used to simulate epidemic outcomes for various types of policy actions on a timeline. Our results lend support to the strategy of combining comprehensive testing, contact tracing and targeted isolation measures with social isolation measures. While social isolation is important in the early stages to prevent explosive growth, relying on social isolation alone (the mitigation strategy) appears to be a destructive policy. The open-source nature of the model facilitates rapid further development. The flexibility of the modelling logic supports the future implementation of several already identified refinements in terms of more realistic population models and new types of more specific policy interventions. Improving estimates of epidemic parameters will make it possible to improve modelling accuracy further.


Sign in / Sign up

Export Citation Format

Share Document