scholarly journals Study of the Effect of Addition of Hydrogen to Natural Gas on Diaphragm Gas Meters

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 3006 ◽  
Author(s):  
Jacek Jaworski ◽  
Paweł Kułaga ◽  
Tomasz Blacharski

Power-to-gas technology plays a key role in the success of the energy transformation. This paper addresses issues related to the legal and technical regulations specifying the rules for adding hydrogen to the natural gas network. The main issue reviewed is the effects of the addition of hydrogen to natural gas on the durability of diaphragm gas meters. The possibility of adding hydrogen to the gas network requires confirmation of whether, within the expected hydrogen concentrations, long-term operation of gas meters will be ensured without compromising their metrological properties and operational safety. Methods for testing the durability of gas meters applied at test benches and sample results of durability tests of gas meters are presented. Based on these results, a metrological and statistical analysis was carried out to establish whether the addition of hydrogen affects the durability of gas meters over time. The most important conclusion resulting from the conducted study indicates that, for the tested gas meter specimens, there was no significant metrological difference between the obtained changes of errors of indications after testing the durability of gas meters with varying hydrogen content (from 0% to 15%).

2020 ◽  
pp. 61-82
Author(s):  
Jamie Kuk Anak Mijim ◽  
Guy Pluvinage

The addition of hydrogen in natural gas could have an impact on the degradation over time of the materials currently used for the storage, transport, distribution and use of natural gas. The compatibility of these materials with natural gas including of hydrogen is dependent on the proportion of hydrogen added to the gas and is assessed with regard to several criteria: Permeation of hydrogen through metallic materials; loss of integrity of these materials and adaptation of follow-up actions in service, surveillance and maintenance of equipment. This paper is devoted to the effect of hydrogen embrittlement (HE) by adding hydrogen into natural gas network on design, maintenance, supervision and maximum allowable operating pressure (MAOP) for smooth and damaged pipes.


Author(s):  
S. Zecevic ◽  
E. M. Patton ◽  
P. Parhami

This paper describes a Direct Carbon-Air Fuel Cell (DCFC) which uses a molten hydroxide electrolyte. In DCFCs, carbon is electrochemically directly oxidized to generate the power without a reforming process. Despite its compelling cost and performance advantages, the use of molten metal hydroxide electrolytes has been ignored by DCFC researches, primarily due to the potential lack of invariance of the molten hydroxide electrolyte caused by its reaction with carbon dioxide. This paper describes the electrochemistry of DCFC based on molten hydroxide electrolyte and discusses means to overcome the historical carbonate formation. Furthermore, it describes the cell performance during the initial stage of a long term operation and discusses the causes for the initial cell performance degradation. To date, five successive generations of medium temperature DCFC prototypes have been built and tested at SARA Inc. to demonstrate the technology, all using graphite rods as their fuel source. The basic feature of the cell is a simple design in which the cathode is not traditional gas fed electrode type. It is a non-porous electrode structure made of an inexpensive Fe-Ti alloy and gaseous oxygen is introduced into the cell by bubbling humid air through the electrolyte. The cell successfully demonstrated delivering more than 50 A at 0.3 V with the current density exceeding 100 mA/cm2. Main feature of DCFC with hydroxide electrolyte is that the cell performance decreases over time mainly due to oxygen cathode polarization. There are three possible causes for this performance decay: Carbonate formation, electrolyte evaporation due to air bubbling, and corrosion products build up. In order to determine the right cause for the performance decay a series of experiments was carried out investigating various parameters involving cell temperature, water content in the melt, current density, carbonate content in the melt, melt level in the cell, air flow rate and intermittent on-off operation. DCFC was operating at constant current while cell voltage and electrode potentials were recorded over time. Results obtained indicated that the performance of DCFC with hydroxide electrolyte during initial 200 h is governed by the oxygen cathode performance that is mainly affected by corrosion products. The corrosion products catalyze decomposition of peroxide ions which are reacting species at the cathode resulting in an increase of cathode polarization over time. Effect of carbonate ions on the initial cell performance decay is insignificant as compared to the effect of corrosion product. Means to overcome the corrosion products issue were discussed.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7555
Author(s):  
Jacek Jaworski ◽  
Paweł Kułaga ◽  
Giorgio Ficco ◽  
Marco Dell’Isola

Blending hydrogen into the natural gas infrastructure is becoming a very promising practice to increase the exploitation of renewable energy sources which can be used to produce “green” hydrogen. Several research projects and field experiments are currently aimed at evaluating the risks associated with utilization of the gas blend in end-use devices such as the gas meters. In this paper, the authors present the results of experiments aimed at assessing the effect of hydrogen injection in terms of the durability of domestic gas meters. To this end, 105 gas meters of different measurement capabilities and manufacturers, both brand-new and withdrawn from service, were investigated in terms of accuracy drift after durability cycles of 5000 and 10,000 h with H2NG mixtures and H2 concentrations of 10% and 15%. The obtained results show that there is no metrologically significant or statistically significant influence of hydrogen content on changes in gas meter indication errors after subjecting the meters to durability testing with a maximum of 15% H2 content over 10,000 h. A metrologically significant influence of the long-term operation of the gas meters was confirmed, but it should not be made dependent on the hydrogen content in the gas. No safety problems related to the loss of external tightness were observed for either the new or 10-year-old gas meters.


2020 ◽  
Vol 1 (2) ◽  
pp. 169-173
Author(s):  
Andrzej Lorkowski ◽  
Robert Jeszke

The whole world is currently struggling with one of the most disastrous pandemics to hit in modern times – Covid-19. Individual national governments, the WHO and worldwide media organisations are appealing for humanity to universally stay at home, to limit contact and to stay safe in the ongoing fight against this unseen threat. Economists are concerned about the devastating effect this will have on the markets and possible outcomes. One of the countries suffering from potential destruction of this situation is Poland. In this article we will explain how difficult internal energy transformation is, considering the long-term crisis associated with the extraction and usage of coal, the European Green Deal and current discussion on increasing the EU 2030 climate ambitions. In the face of an ongoing pandemic, the situation becomes even more challenging with each passing day.


Sign in / Sign up

Export Citation Format

Share Document