scholarly journals A New Generalized Morse Potential Function for Calculating Cohesive Energy of Nanoparticles

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3323 ◽  
Author(s):  
Omar M. Aldossary ◽  
Anwar Al Rsheed

A new generalized Morse potential function with an additional parameter m is proposed to calculate the cohesive energy of nanoparticles. The calculations showed that a generalized Morse potential function using different values for the m and α parameters can be used to predict experimental values for the cohesive energy of nanoparticles. Moreover, the enlargement of the attractive force in the generalized potential function plays an important role in describing the stability of the nanoparticles rather than the softening of the repulsive interaction in the cases when m > 1.

1977 ◽  
Vol 32 (8) ◽  
pp. 897-898 ◽  
Author(s):  
Y. K. Chan ◽  
B. S. Rao

Abstract The radial Schrödinger wave equation with Morse potential function is solved for HF molecule. The resulting vibration-rotation eigenfunctions are then used to compute the matrix elements of (r - re)n. These are combined with the experimental values of the electric dipole matrix elements to calculate the dipole moment coefficients, M 1 and M 2.


1972 ◽  
Vol 27 (11) ◽  
pp. 1563-1565 ◽  
Author(s):  
D. N. Urquhart ◽  
T. D. Clark ◽  
B. S. Rao

Abstract The radial Schrödinger wave equation with Morse potential function is solved for H79Br molecule. The resulting vibration-rotation eigenfunctions are then used to compute the matrix elements of (r-re)n . These are combined with the experimental values of the electric dipole matrix elements to calculate the dipole moment coefficients, M1 and M2 .


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 50
Author(s):  
Barbara D. Weiß ◽  
Michael Harasek

This review studies unwanted precipitation reactions, which can occur in SO2 absorption processes using a magnesium hydroxide slurry. Solubility data of potential salts in the MgO-CaO-SO2-H2O system are evaluated. The reviewed data can serve as a reliable basis for process modeling of this system used to support the optimization of the SO2 absorption process. This study includes the solubility data of MgSO3, MgSO4, Mg(OH)2, CaSO3, CaSO4, and Ca(OH)2 as potential salts. The solubility is strongly dependent on the state of the precipitated salts. Therefore, this review includes studies on the stability of different forms of the salts under different conditions. The solubility data in water over temperature serve as a base for modeling the precipitation in such system. Furthermore, influencing factors such as pH value, SO2 content and the co-existence of other salts are included and available data on such dependencies are reviewed. Literature data evaluated by the International Union of Pure and Applied Chemistry (IUPAC) are revisited and additional and newer studies are supplemented to obtain a solid base of accurate experimental values. For temperatures higher than 100 °C the available data are scarce. For a temperature range from 0 to 100 °C, the reviewed investigations and data provide a good base to evaluate and adapt process models for processes in order to map precipitations issues accurately.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350045 ◽  
Author(s):  
ANURAG SRIVASTAVA ◽  
BODDEPALLI SANTHIBHUSHAN ◽  
PANKAJ DOBWAL

The present paper discusses the investigation of electronic properties of anthracene-based single electron transistor (SET) operating in coulomb blockade region using Density Functional Theory (DFT) based Atomistix toolkit-Virtual nanolab. The charging energies of anthracene molecule in isolated as well as electrostatic SET environments have been calculated for analyzing the stability of the molecule for different charge states. Study also includes the analysis of SET conductance dependence on source/drain and gate potentials in reference to the charge stability diagram. Our computed charging energies for anthracene in isolated environment are in good agreement with the experimental values and the proposed anthracene SET shows good switching properties in comparison to other acene series SETs.


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
R. El Kinani ◽  
H. Kaidi ◽  
M. Benhamou

In this paper, we present a non-linear model for the study of DNA denaturation transition. To this end, we assume that the double-strands DNA interact via a realistic generalized Morse potential that reproduces well the features of the real interaction. Using the Transfer Matrix Method, based on the resolution of a Schrödinger equation, we first determine exactly their solution, which are found to be bound states. Second, from an exact expression of the ground state, we compute the denaturation temperature and the free energy density, in terms of the parameters of the potential.Then, we calculate the contact probability, which is the probability to find the double-strands at a (finite) distance apart, from which we determine the behaviour of the mean-distance between DNA-strands.The main conclusion is that, the present analytical study reveals that the generalized Morse potential is a good candidate for the study of DNA denaturation


2017 ◽  
Vol 26 (46) ◽  
Author(s):  
Víctor Mendoza-Estrada ◽  
Melissa Romero-Baños ◽  
Viviana Dovale-Farelo ◽  
William López-Pérez ◽  
Álvaro González-García ◽  
...  

In this research, first-principles calculations were carried out within the density functional theory (DFT) framework, using LDA and GGA, in order to study the structural, elastic, electronic and thermal properties of InAs in the zinc-blende structure. The results of the structural properties (a, B0, ) agree with the theoretical and experimental results reported by other authors. Additionally, the elastic properties, the elastic constants (C11, C12 and C44), the anisotropy coefficient (A) and the predicted speeds of the sound ( , , and ) are in agreement with the results reported by other authors. In contrast, the shear modulus (G), the Young's modulus (Y) and the Poisson's ratio (v) show some discrepancy with respect to the experimental values, although, the values obtained are reasonable. On the other hand, it is evident the tendency of the LDA and GGA approaches to underestimate the value of the band-gap energy in semiconductors. The thermal properties (V, , θD yCV) of InAs, calculated using the quasi-harmonic Debye model, are slightly sensitive as the temperature increases. According to the stability criteria and the negative value of the enthalpy of formation, InAs is mechanically and thermodynamically stable. Therefore, this work can be used as a future reference for theoretical and experimental studies based on InAs.


1954 ◽  
Vol 21 (1) ◽  
pp. 1-7
Author(s):  
L. Talbot

Abstract The problem of the decay of a rotationally symmetric steady swirl superimposed on Poiseuille flow in a round pipe was investigated theoretically and experimentally. The object was to determine the degree to which the rate of decay of the swirl as predicted by a linearized theory agreed with measured rates of decay at flow conditions near the critical conditions for swirl instability. The solution to the linearized equation of motion for the swirl was obtained. Swirling flow was produced experimentally by rotating a section of the test pipe. Swirl velocities were determined from motion-picture studies of colored oil droplets introduced in the flow. The stability of the swirl was investigated through visualization of a dye filament, and a critical curve for swirl instability was determined experimentally relating the angular velocity of the rotating section to the Reynolds number. The theoretical and experimental values for the decay parameter were found to agree closely, even at conditions of flow near the critical conditions for instability. It was concluded that in the problem under consideration the nonlinear effects are not appreciable for stable decay of the swirl.


1970 ◽  
Vol 25 (12) ◽  
pp. 1932-1936
Author(s):  
Walter Yeranos

Abstract Taking into account the universal correlation of the force constants of halide bonds with their respective dissociation energies (excluding the fluorides), an internuclear potential energy function of the type V(r) = De (1-e-α(r-re))2 + β (1-δF,X) (r - re)2e-γ(r-re) has been proposed for the diatomic halides. α und β, in the latter are constants for a specific series, γ is determined from the rotational-vibrational constant αe, and the function reduces to the ordinary Morse potential function in the case of the fluorides. It, moreover, performs as well as the Hulburt-Hirschfelder 5-parameter function, and, unlike the latter, utilizes the anharmoni-city constant ωeXe as an internal check.


Sign in / Sign up

Export Citation Format

Share Document