CHARGE STABILITY AND CONDUCTANCE ANALYSIS OF ANTHRACENE-BASED SINGLE ELECTRON TRANSISTOR

2013 ◽  
Vol 12 (06) ◽  
pp. 1350045 ◽  
Author(s):  
ANURAG SRIVASTAVA ◽  
BODDEPALLI SANTHIBHUSHAN ◽  
PANKAJ DOBWAL

The present paper discusses the investigation of electronic properties of anthracene-based single electron transistor (SET) operating in coulomb blockade region using Density Functional Theory (DFT) based Atomistix toolkit-Virtual nanolab. The charging energies of anthracene molecule in isolated as well as electrostatic SET environments have been calculated for analyzing the stability of the molecule for different charge states. Study also includes the analysis of SET conductance dependence on source/drain and gate potentials in reference to the charge stability diagram. Our computed charging energies for anthracene in isolated environment are in good agreement with the experimental values and the proposed anthracene SET shows good switching properties in comparison to other acene series SETs.

NANO ◽  
2014 ◽  
Vol 09 (03) ◽  
pp. 1450032 ◽  
Author(s):  
J. V. N. SARMA ◽  
RAJIB CHOWDHURY ◽  
R. JAYAGANTHAN

The application of graphyne for a single-electron transistor (SET) that is operating in the Coulomb blockade regime is investigated in the first principles framework. Density functional theory modeling for graphyne has been used and the device environment has been described by a continuum model. The interaction between graphyne and the SET environment is treated with self-consistent Poisson equations. The charging energy as a function of gate voltage thus calculated has been used to obtain the charge stability diagram for the present system. The effect of electrode separation and the position of the molecule with respect to the dielectric on the gate coupling have been studied further. As compared with the previously studied systems on this line, graphyne has been observed to provide the gate coupling that is nearly close to that of benzene and graphene, but significantly greater than fullerene-based systems.


2021 ◽  
Vol 2140 (1) ◽  
pp. 012006
Author(s):  
A G Duisenova ◽  
D M Sergeyev

Abstract In this work within the framework of the density functional theory and the method of nonequilibrium Green’s functions the dependences of the total energy of molecules C80-SET and (Sc3N)@C80 - SET on their total charge, the dependence of the total energy from the gate voltage and the stability diagram of the single-electron transistor have been determined. It is noted that for transition to switch to on mode (Sc3N)@C80-SET it is necessary to apply the gate voltage in the range from 0.019 ≤ VG ≤ 5.940 with the bias voltage -2.040 ≤ VSD ≤ 2.155 V. Considering that at values of bias voltage equal to –0.381 ≤ VSD ≤ 0.533 V there is no voltage on the substrate (VG = 0 V) and electric current does not flow. It is shown that the total energy at negative values of charge is higher than at positive charges and that the area of the Coulomb rhombus in fullerene with scandium nitride is 5.3 times larger than in “pure” fullerene.


In this paper, we have investigated the charge stability diagram and conductance dependence on source drain bias and gate voltage of carbon nanotube based single electron transistor (SET) by using first principle calculations. All calculations have been executed by using ATK-VNL simulation package based on density functional theory (DFT). We have applied these calculations for carbon nanotube based SET; the nanotube has been placed just above the dielectric ( ) in between the source and drain electrodes of gold. The single walled carbon nanotube has been used in SET, which have ultra-small diameter and (4,0) configuration. The addition energy of the device has been calculated, which can be defined as the difference between the electron affinity, and ionization energies. The calculated values of energies have been found to be -10.17694 eV and -11.04034 eV for isolated phase and SET environment respectively. In electrostatic environment, the results were showing the regularization of molecular energy levels and therefore the addition energy reduced. The calculations for additional energies, variations of total energies to that of the gate voltages and charge stability diagram (CSD) have also been done in this study.


2017 ◽  
Vol 26 (46) ◽  
Author(s):  
Víctor Mendoza-Estrada ◽  
Melissa Romero-Baños ◽  
Viviana Dovale-Farelo ◽  
William López-Pérez ◽  
Álvaro González-García ◽  
...  

In this research, first-principles calculations were carried out within the density functional theory (DFT) framework, using LDA and GGA, in order to study the structural, elastic, electronic and thermal properties of InAs in the zinc-blende structure. The results of the structural properties (a, B0, ) agree with the theoretical and experimental results reported by other authors. Additionally, the elastic properties, the elastic constants (C11, C12 and C44), the anisotropy coefficient (A) and the predicted speeds of the sound ( , , and ) are in agreement with the results reported by other authors. In contrast, the shear modulus (G), the Young's modulus (Y) and the Poisson's ratio (v) show some discrepancy with respect to the experimental values, although, the values obtained are reasonable. On the other hand, it is evident the tendency of the LDA and GGA approaches to underestimate the value of the band-gap energy in semiconductors. The thermal properties (V, , θD yCV) of InAs, calculated using the quasi-harmonic Debye model, are slightly sensitive as the temperature increases. According to the stability criteria and the negative value of the enthalpy of formation, InAs is mechanically and thermodynamically stable. Therefore, this work can be used as a future reference for theoretical and experimental studies based on InAs.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 301
Author(s):  
Vahideh Khademhosseini ◽  
Daryoosh Dideban ◽  
Mohammad Taghi Ahmadi ◽  
Hadi Heidari

The single electron transistor (SET) is a nanoscale switching device with a simple equivalent circuit. It can work very fast as it is based on the tunneling of single electrons. Its nanostructure contains a quantum dot island whose material impacts on the device operation. Carbon allotropes such as fullerene (C60), carbon nanotubes (CNTs) and graphene nanoscrolls (GNSs) can be utilized as the quantum dot island in SETs. In this study, multiple quantum dot islands such as GNS-CNT and GNS-C60 are utilized in SET devices. The currents of two counterpart devices are modeled and analyzed. The impacts of important parameters such as temperature and applied gate voltage on the current of two SETs are investigated using proposed mathematical models. Moreover, the impacts of CNT length, fullerene diameter, GNS length, and GNS spiral length and number of turns on the SET’s current are explored. Additionally, the Coulomb blockade ranges (CB) of the two SETs are compared. The results reveal that the GNS-CNT SET has a lower Coulomb blockade range and a higher current than the GNS-C60 SET. Their charge stability diagrams indicate that the GNS-CNT SET has smaller Coulomb diamond areas, zero-current regions, and zero-conductance regions than the GNS-C60 SET.


2011 ◽  
Vol 222 ◽  
pp. 66-69 ◽  
Author(s):  
Hiroya Ikeda ◽  
Faiz Salleh

We propose a novel single-electron refrigerator (SER) which can be fabricated in silicon-on-insulator wafers. The SER has a structure of single-electron box combined with single-electron pump (SEP). An equivalent circuit of the SEP-refrigerator is represented and its stability diagram (Coulomb diamond) is theoretically calculated. It is found that the stability diagram has a honeycomb structure. Moreover, the operation of the single-electron transfer and single-electron storage is numerically demonstrated using a Monte Carlo simulation based on the orthodox theory of the Coulomb blockade phenomenon.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


Author(s):  
Nilanjan Roy ◽  
Sucharita Giri ◽  
Harshit ◽  
Partha P. Jana

Abstract The site preference and atomic ordering of the ternary Rh5Ga2As have been investigated using first-principles density functional theory (DFT). An interesting atomic ordering of two neighboring elements Ga and As reported in the structure of Rh5Ga2As by X-ray diffraction data only is confirmed by first-principles total-energy calculations. The previously reported experimental model with Ga/As ordering is indeed the most stable in the structure of Rh5Ga2As. The calculation detected that there is an obvious trend concerning the influence of the heteroatomic Rh–Ga/As contacts on the calculated total energy. Interestingly, the orderly distribution of As and Ga that is found in the binary GaAs (Zinc-blende structure type), retained to ternary Rh5Ga2As. The density of states (DOS) and Crystal Orbital Hamiltonian Population (COHP) are calculated to enlighten the stability and bonding characteristics in the structure of Rh5Ga2As. The bonding analysis also confirms that Rh–Ga/As short contacts are the major driving force towards the overall stability of the compound.


Sign in / Sign up

Export Citation Format

Share Document