scholarly journals Very Short-Term Power Forecasting of High Concentrator Photovoltaic Power Facility by Implementing Artificial Neural Network

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3493
Author(s):  
Yaser I. Alamin ◽  
Mensah K. Anaty ◽  
José Domingo Álvarez Hervás ◽  
Khalid Bouziane ◽  
Manuel Pérez García ◽  
...  

Concentrator photovoltaic (CPV) is used to obtain cheaper and more stable renewable energy. Methods which predict the energy production of a power system under specific circumstances are highly important to reach the goal of using this system as a part of a bigger one or of making it integrated with the grid. In this paper, the development of a model to predict the energy of a High CPV (HCPV) system using an Artificial Neural Network (ANN) is described. This system is located at the University of Rabat. The performed experiments show a quick prediction with encouraging results for a very short-term prediction horizon, considering the small amount of data available. These conclusions are based on the processes of obtaining the ANN models and detailed discussion of the results, which have been validated using real data.

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 766
Author(s):  
Rashad A. R. Bantan ◽  
Ramadan A. Zeineldin ◽  
Farrukh Jamal ◽  
Christophe Chesneau

Deanship of scientific research established by the King Abdulaziz University provides some research programs for its staff and researchers and encourages them to submit proposals in this regard. Distinct research study (DRS) is one of these programs. It is available all the year and the King Abdulaziz University (KAU) staff can submit more than one proposal at the same time up to three proposals. The rules of the DSR program are simple and easy so it contributes in increasing the international rank of KAU. The authors are offered financial and moral reward after publishing articles from these proposals in Thomson-ISI journals. In this paper, multiplayer perceptron (MLP) artificial neural network (ANN) is employed to determine the factors that have more effect on the number of ISI published articles. The proposed study used real data of the finished projects from 2011 to April 2019.


2021 ◽  
Author(s):  
DEVIN NIELSEN ◽  
TYLER LOTT ◽  
SOM DUTTA ◽  
JUHYEONG LEE

In this study, three artificial neural network (ANN) models are developed with back propagation (BP) optimization algorithms to predict various lightning damage modes in carbon/epoxy laminates. The proposed ANN models use three input variables associated with lightning waveform parameters (i.e., the peak current amplitude, rising time, and decaying time) to predict fiber damage, matrix damage, and through-thickness damage in the composites. The data used for training and testing the networks was actual lightning damage data collected from peer-reviewed published literature. Various BP training algorithms and network architecture configurations (i.e., data splitting, the number of neurons in a hidden layer, and the number of hidden layers) have been tested to improve the performance of the neural networks. Among the various BP algorithms considered, the Bayesian regularization back propagation (BRBP) showed the overall best performance in lightning damage prediction. When using the BRBP algorithm, as expected, the greater the fraction of the collected data that is allocated to the training dataset, the better the network is trained. In addition, the optimal ANN architecture was found to have a single hidden layer with 20 neurons. The ANN models proposed in this work may prove useful in preliminary assessments of lightning damage and reduce the number of expensive experimental lightning tests.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Pei-Fang (Jennifer) Tsai ◽  
Po-Chia Chen ◽  
Yen-You Chen ◽  
Hao-Yuan Song ◽  
Hsiu-Mei Lin ◽  
...  

For hospitals’ admission management, the ability to predict length of stay (LOS) as early as in the preadmission stage might be helpful to monitor the quality of inpatient care. This study is to develop artificial neural network (ANN) models to predict LOS for inpatients with one of the three primary diagnoses: coronary atherosclerosis (CAS), heart failure (HF), and acute myocardial infarction (AMI) in a cardiovascular unit in a Christian hospital in Taipei, Taiwan. A total of 2,377 cardiology patients discharged between October 1, 2010, and December 31, 2011, were analyzed. Using ANN or linear regression model was able to predict correctly for 88.07% to 89.95% CAS patients at the predischarge stage and for 88.31% to 91.53% at the preadmission stage. For AMI or HF patients, the accuracy ranged from 64.12% to 66.78% at the predischarge stage and 63.69% to 67.47% at the preadmission stage when a tolerance of 2 days was allowed.


Author(s):  
Agus Saptoro ◽  
Moses O. Tadé ◽  
Hari Vuthaluru

Abstract This paper proposes a method, namely MDKS (Kennard-Stone algorithm based on Mahalanobis distance), to divide the data into training and testing subsets for developing artificial neural network (ANN) models. This method is a modified version of the Kennard-Stone (KS) algorithm. With this method, better data splitting, in terms of data representation and enhanced performance of developed ANN models, can be achieved. Compared with standard KS algorithm and another improved KS algorithm (data division based on joint x - y distances (SPXY) method), the proposed method has also shown a better performance. Therefore, the proposed technique can be used as an advantageous alternative to other existing methods of data splitting for developing ANN models. Care should be taken when dealing with large amount of dataset since they may increase the computational load for MDKS due to its variance-covariance matrix calculations.


Sign in / Sign up

Export Citation Format

Share Document