scholarly journals A Stackelberg Game-Based Approach for Transactive Energy Management in Smart Distribution Networks

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3621 ◽  
Author(s):  
Sara Haghifam ◽  
Kazem Zare ◽  
Mehdi Abapour ◽  
Gregorio Muñoz-Delgado ◽  
Javier Contreras

Recently, with the penetration of numerous Distributed Energy Resources (DER) in Smart Distribution Networks (SDN), Local Transactive Markets have emerged. Exchanging energy between all participants of local markets results in the satisfaction of producers and consumers. Based on these issues, this study provides a novel framework for the participation of SDN-independent entities in wholesale and local electricity markets simultaneously. In this regard, the considered system’s players, namely Distribution System Operator (DSO) and DER Aggregator (AG), take part within local as well as wholesale markets in two-day ahead and real-time stages. Moreover, to deal with the inherent conflict between the existing players’ interests, a Stackelberg game-based technique is proposed. In the raised competition, the leader, DSO, attempts to minimize its operating costs, while the follower, DER AG, tends to maximize its profit. Therefore, actors’ actions choices within both markets are made non-cooperatively. On the other hand, to handle the uncertain nature of stochastic parameters in the depicted problem, Monte Carlo Simulation (MCS), together with a fast backward/forward scenario reduction approach, is exploited. Ultimately, to evaluate the efficiency of the proposed scheme, two different case studies, with and without considering the competitive environment, are implemented on a modified IEEE-33 bus SDN.

2018 ◽  
Vol 210 ◽  
pp. 881-895 ◽  
Author(s):  
Pol Olivella-Rosell ◽  
Eduard Bullich-Massagué ◽  
Mònica Aragüés-Peñalba ◽  
Andreas Sumper ◽  
Stig Ødegaard Ottesen ◽  
...  

2019 ◽  
Vol 11 (2) ◽  
pp. 301 ◽  
Author(s):  
Jingpeng Yue ◽  
Zhijian Hu ◽  
Amjad Anvari-Moghaddam ◽  
Josep M. Guerrero

In order to coordinate the economic desire of microgrid (MG) owners and the stability operation requirement of the distribution system operator (DSO), a multi-market participation framework is proposed to stimulate the energy transaction potential of MGs through distributed and centralized ways. Firstly, an MG equipped with storage can contribute to the stability improvement at special nodes of the distribution grid where the uncertain factors (such as intermittent renewable sources and electric vehicles) exist. The DSO is thus interested in encouraging specified MGs to provide voltage stability services by creating a distribution grid service market (DGSM), where the dynamic production-price auction is used to capture the competition of the distributed MGs. Moreover, an aggregator, serving as a broker and controller for MGs, is considered to participate in the day-ahead wholesale market. A Stackelberg game is modeled accordingly to solve the price and quantity package allocation between aggregator and MGs. Finally, the modified IEEE-33 bus distribution test system is used to demonstrate the applicability and effectiveness of the proposed multi-market mechanism. The results under this framework improve both MGs and utility.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1924
Author(s):  
José Luis Picard ◽  
Irene Aguado ◽  
Noemi G. Cobos ◽  
Vicente Fuster-Roig ◽  
Alfredo Quijano-López

Within the current context of energy transition, the first step to assure cost-efficient and reliable grid operations is the use of adequate planning tools. These tools must evaluate the real needs for reinforcing, replacing and incorporating new network assets considering not only technical and regulatory aspects but also the operational benefits that distributed energy resources (DER) may provide. With this purpose, this paper presents a novel methodology for the analysis and the advanced planning of the active distribution networks in the context of smart grids. The main contributions of the proposed methodology are the following: to incorporate the real capabilities of DER proactively to the planning and operation of distribution networks; to appropriately use the data available in current smart grids; and to promote the efficient use of network capacity in distribution level (efficiency decisions of its users, grid assets in service, access conditions, etc.) through potential operational services, variable in time. The proposed methodology was successfully tested on a real distribution network with 450,000 delivery points on a geographical area of 5000 km2.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1203 ◽  
Author(s):  
Miguel Manuel de Villena ◽  
Raphael Fonteneau ◽  
Axel Gautier ◽  
Damien Ernst

In the context of increasing decentralised electricity generation, this paper evaluates the effect of different regulatory frameworks on the evolution of distribution networks. This problem is addressed by means of agent based modelling in which the interactions between the agents of a distribution network and an environment are described. The consumers and the distribution system operator are the agents, which act in an environment that is composed by a set of rules. For a given environment, we can simulate the evolution of the distribution network by computing the actions of the agents at every time step of a discrete time dynamical system. We assume the electricity consumers are rational agents that may deploy distributed energy installations. The deployment of such installations may alter the remuneration mechanism of the distribution system operator. By modelling this mechanism, we may compute the evolution of the electricity distribution tariff in response to the deployment of distributed generation.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 390 ◽  
Author(s):  
Anna Di Fazio ◽  
Mario Russo ◽  
Michele De Santis

This paper deals with the problem of the voltage profile optimization in a distribution system including distributed energy resources. Adopting a centralized approach, the voltage optimization is a non-linear programming problem with large number of variables requiring a continuous remote monitoring and data transmission from/to loads and distributed energy resources. In this study, a recently-proposed Jacobian-based linear method is used to model the steady-state operation of the distribution network and to divide the network into voltage control zones so as to reformulate the centralized optimization as a quadratic programming of reduced dimension. New clustering methods for the voltage control zone definition are proposed to consider the dependence of the nodal voltages on both active and reactive powers. Zoning methodologies are firstly tested on a 24-nodes low voltage network and, then, applied to the voltage optimization problem with the aim of analyzing the impact of the R/X ratios on the zone evaluation and on the voltage optimization solution.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4073 ◽  
Author(s):  
Karim L. Anaya ◽  
Michael G. Pollitt

This paper identifies and explores regulatory issues that may have an impact on the use of flexibility services by distribution utilities to solve grid constraints. This can be done by flexible distributed energy resources which can be instructed, for instance, to reduce export generating capacity or increasing consumption. We want to identify how regulation can better support the development of the future distribution utility in its role as neutral market facilitator, enabling more competition in local flexibility markets and optimal use of resources. A set of questionnaires were designed to capture the insights around important aspects of the regulation of flexibility markets (utilities’ network incentives, network tariff structure, market design for flexibility markets, etc.). These were sent to distribution utilities, energy regulators, energy marketplaces, energy associations and relevant experts from seven jurisdictions. The responses suggest a collective interest in the procurement of flexibility services by distribution utilities from distributed energy resources. New regulations, the adaptation of current rules and recent consultations reflect this. However, the amount of progress with and preferences for key regulatory changes differ across jurisdictions.


Sign in / Sign up

Export Citation Format

Share Document