scholarly journals A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks

2019 ◽  
Vol 11 (2) ◽  
pp. 301 ◽  
Author(s):  
Jingpeng Yue ◽  
Zhijian Hu ◽  
Amjad Anvari-Moghaddam ◽  
Josep M. Guerrero

In order to coordinate the economic desire of microgrid (MG) owners and the stability operation requirement of the distribution system operator (DSO), a multi-market participation framework is proposed to stimulate the energy transaction potential of MGs through distributed and centralized ways. Firstly, an MG equipped with storage can contribute to the stability improvement at special nodes of the distribution grid where the uncertain factors (such as intermittent renewable sources and electric vehicles) exist. The DSO is thus interested in encouraging specified MGs to provide voltage stability services by creating a distribution grid service market (DGSM), where the dynamic production-price auction is used to capture the competition of the distributed MGs. Moreover, an aggregator, serving as a broker and controller for MGs, is considered to participate in the day-ahead wholesale market. A Stackelberg game is modeled accordingly to solve the price and quantity package allocation between aggregator and MGs. Finally, the modified IEEE-33 bus distribution test system is used to demonstrate the applicability and effectiveness of the proposed multi-market mechanism. The results under this framework improve both MGs and utility.

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3621 ◽  
Author(s):  
Sara Haghifam ◽  
Kazem Zare ◽  
Mehdi Abapour ◽  
Gregorio Muñoz-Delgado ◽  
Javier Contreras

Recently, with the penetration of numerous Distributed Energy Resources (DER) in Smart Distribution Networks (SDN), Local Transactive Markets have emerged. Exchanging energy between all participants of local markets results in the satisfaction of producers and consumers. Based on these issues, this study provides a novel framework for the participation of SDN-independent entities in wholesale and local electricity markets simultaneously. In this regard, the considered system’s players, namely Distribution System Operator (DSO) and DER Aggregator (AG), take part within local as well as wholesale markets in two-day ahead and real-time stages. Moreover, to deal with the inherent conflict between the existing players’ interests, a Stackelberg game-based technique is proposed. In the raised competition, the leader, DSO, attempts to minimize its operating costs, while the follower, DER AG, tends to maximize its profit. Therefore, actors’ actions choices within both markets are made non-cooperatively. On the other hand, to handle the uncertain nature of stochastic parameters in the depicted problem, Monte Carlo Simulation (MCS), together with a fast backward/forward scenario reduction approach, is exploited. Ultimately, to evaluate the efficiency of the proposed scheme, two different case studies, with and without considering the competitive environment, are implemented on a modified IEEE-33 bus SDN.


Author(s):  
Sunny Katyara ◽  
Lukasz Staszewski ◽  
Faheem Akhtar Chachar

Background: Since the distribution networks are passive until Distributed Generation (DG) is not being installed into them, the stability issues occur in the distribution system after the integration of DG. Methods: In order to assure the simplicity during the calculations, many approximations have been proposed for finding the system’s parameters i.e. Voltage, active and reactive powers and load angle, more efficiently and accurately. This research presents an algorithm for finding the Norton’s equivalent model of distribution system with DG, considering from receiving end. Norton’s model of distribution system can be determined either from its complete configuration or through an algorithm using system’s voltage and current profiles. The algorithm involves the determination of derivative of apparent power against the current (dS/dIL) of the system. Results: This work also verifies the accuracy of proposed algorithm according to the relative variations in the phase angle of system’s impedance. This research also considers the varying states of distribution system due to switching in and out of DG and therefore Norton’s model needs to be updated accordingly. Conclusion: The efficacy of the proposed algorithm is verified through MATLAB simulation results under two scenarios, (i) normal condition and (ii) faulty condition. During normal condition, the stability factor near to 1 and change in dS/dIL was near to 0 while during fault condition, the stability factor was higher than 1 and the value of dS/dIL was away from 0.


2020 ◽  
Author(s):  
Lawryn Edmonds ◽  
Bo Liu ◽  
Hongyu Wu ◽  
Hang Zhang ◽  
Don Gruenbacher ◽  
...  

As home energy management systems (HEMSs) are implemented in homes as ways of reducing customer costs and providing demand response (DR) to the electric utility, homeowner’s privacy can be compromised. As part of the HEMS framework, homeowners are required to send load forecasts to the distribution system operator (DSO) for power balancing purposes. Submitting forecasts allows a platform for attackers to gain knowledge on user patterns based on the load information provided. The attacker could, for example, enter the home to steal valuable possessions when the homeowner is away. In this paper, we propose a framework using a smart contract within a private blockchain to keep customer information private when communicating with the DSO. The results show the HEMS users’ privacy is maintained, while the benefits of data sharing are obtained. Blockchain and its associated smart contracts may be a viable solution to security concerns in DR applications where load forecasts are sent to a DSO.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3442
Author(s):  
Fábio Retorta ◽  
João Aguiar ◽  
Igor Rezende ◽  
José Villar ◽  
Bernardo Silva

This paper proposes a near to real-time local market to provide reactive power to the transmission system operator (TSO), using the resources connected to a distribution grid managed by a distribution system operator (DSO). The TSO publishes a requested reactive power profile at the TSO-DSO interface for each time-interval of the next delivery period, so that market agents (managing resources of the distribution grid) can prepare and send their bids accordingly. DSO resources are the first to be mobilized, and the remaining residual reactive power is supplied by the reactive power flexibility offered in the local reactive market. Complex bids (with non-curtailability conditions) are supported to provide flexible ways of bidding fewer flexible assets (such as capacitor banks). An alternating current (AC) optimal power flow (OPF) is used to clear the bids by maximizing the social welfare to supply the TSO required reactive power profile, subject to the DSO grid constraints. A rolling window mechanism allows a continuous dispatching of reactive power, and the possibility of adapting assigned schedules to real time constraints. A simplified TSO-DSO cost assignment of the flexible reactive power used is proposed to share for settlement purposes.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4028 ◽  
Author(s):  
Abreu ◽  
Soares ◽  
Carvalho ◽  
Morais ◽  
Simão ◽  
...  

Challenges in the coordination between the transmission system operator (TSO) and the distribution system operator (DSO) have risen continuously with the integration of distributed energy resources (DER). These technologies have the possibility to provide reactive power support for system operators. Considering the Portuguese reactive power policy as an example of the regulatory framework, this paper proposes a methodology for proactive reactive power management of the DSO using the renewable energy sources (RES) considering forecast uncertainty available in the distribution system. The proposed method applies a stochastic sequential alternative current (AC)-optimal power flow (SOPF) that returns trustworthy solutions for the DSO and optimizes the use of reactive power between the DSO and DER. The method is validated using a 37-bus distribution network considering real data. Results proved that the method improves the reactive power management by taking advantage of the full capabilities of the DER and by reducing the injection of reactive power by the TSO in the distribution network and, therefore, reducing losses.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1441
Author(s):  
Saeid Esmaeili ◽  
Amjad Anvari-Moghaddam ◽  
Erfan Azimi ◽  
Alireza Nateghi ◽  
João P. S. Catalão

A bi-level operation scheduling of distribution system operator (DSO) and multi-microgrids (MMGs) considering both the wholesale market and retail market is presented in this paper. To this end, the upper-level optimization problem minimizes the total costs from DSO’s point of view, while the profits of microgrids (MGs) are maximized in the lower-level optimization problem. Besides, a scenario-based stochastic programming framework using the heuristic moment matching (HMM) method is developed to tackle the uncertain nature of the problem. In this regard, the HMM technique is employed to model the scenario matrix with a reduced number of scenarios, which is effectively suitable to achieve the correlations among uncertainties. In order to solve the proposed non-linear bi-level model, Karush–Kuhn–Tucker (KKT) optimality conditions and linearization techniques are employed to transform the bi-level problem into a single-level mixed-integer linear programming (MILP) optimization problem. The effectiveness of the proposed model is demonstrated on a real-test MMG system.


Energies ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 1156 ◽  
Author(s):  
Nikoleta Andreadou ◽  
Evangelos Kotsakis ◽  
Marcelo Masera

The modernization of the distribution grid requires a huge amount of data to be transmitted and handled by the network. The deployment of Advanced Metering Infrastructure systems results in an increased traffic generated by smart meters. In this work, we examine the smart meter traffic that needs to be accommodated by a real distribution system. Parameters such as the message size and the message transmission frequency are examined and their effect on traffic is showed. Limitations of the system are presented, such as the buffer capacity needs and the maximum message size that can be communicated. For this scope, we have used the parameters of a real distribution network, based on a survey at which the European Distribution System Operators (DSOs) have participated. For the smart meter traffic, we have used two popular specifications, namely the G3-PLC–“G3 Power Line communication” and PRIME–acronym for “PoweRline Intelligent Metering Evolution”, to simulate the characteristics of a system that is widely used in practice. The results can be an insight for further development of the Information and Communication Technology (ICT) systems that control and monitor the Low Voltage (LV) distribution grid. The paper presents an analysis towards identifying the needs of distribution networks with respect to telecommunication data as well as the main parameters that can affect the Inverse Fast Fourier Transform (IFFT) system performance. Identifying such parameters is consequently beneficial to designing more efficient ICT systems for Advanced Metering Infrastructure.


2014 ◽  
Vol 700 ◽  
pp. 103-110
Author(s):  
Lei Yu ◽  
Tian Yang Zhao ◽  
Xu Wu ◽  
Jian Hua Zhang

With recent development of technology and management in power market and equipment, more and more distributed generation (DG) is embedded in the distribution network. However the approach of connecting DG in most cases is based on a so-called ‘fit and forget’ policy and the capacity of DG is limited rigidly by distribution system operator to avoid the negative effects of high level penetration. New management technologies have been proposed to handle the integration of DGs in the distribution networks. In this review, the micro grid (MG) was treated as the local control method to coordinate DGs within a small area of distribution network. And the active distribution network (AND) was treated as the global control mechanism to actively manage DGs, MGs and other equipment. The operation framework of ADN was firstly introduced. Then based on the static and dynamic models of DGs and MGs, impacts of DGs and MGs on the ADN are surveyed from power quality, stability to the operation. Finally, the conclusion and suggestion is given in this paper.


Author(s):  
Subramanya Sarma S ◽  
V. Madhusudhan ◽  
V. Ganesh

<p>Reliability worth assessment is a primary concern in planning and designing of electrical distribution systems those operate in an economic manner with minimal interruption of electric supply to customer loads. Renewable energy sources (RES) based Distributed Generation (DG) units can be forecasted to penetrate in distribution networks due to advancement in their technology. The assessment of reliability worth of DG enhanced distribution networks is a relatively new research area. This paper proposes a methodology that can be used to analyze the reliability of active distribution systems (DG enhanced distribution system) and can be applied in preliminary planning studies to compute the reliability indices and statistics. The reliability assessment in this work is carried out with analytical approach applied on a test system and simulated results validate that installation of distributed generators can improve the distribution system reliability considerably.</p>


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1802 ◽  
Author(s):  
Chong Cao ◽  
Zhouquan Wu ◽  
Bo Chen

In this paper, a vehicle–grid integration (VGI) control strategy for radial power distribution networks is presented. The control schemes are designed at both microgrid level and distribution level. At the VGI microgrid level, the available power capacity for electric vehicle (EV) charging is optimally allocated for charging electric vehicles to meet charging requirements. At the distribution grid level, a distributed voltage compensation algorithm is designed to recover voltage violation when it happens at a distribution node. The voltage compensation is achieved through a negotiation between the grid-level agent and VGI microgrid agents using the alternating direction method of multipliers. In each negotiation round, individual agents pursue their own objectives. The computation can be carried out in parallel for each agent. The presented VGI control schemes are simulated and verified in a modified IEEE 37 bus distribution system. The simulation results are presented to show the effectiveness of the VGI control algorithms and the effect of algorithm parameters on the convergence of agent negotiation.


Sign in / Sign up

Export Citation Format

Share Document