scholarly journals Formic Acid as a Hydrogen Donor for Catalytic Transformations of Tar

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4515
Author(s):  
Vladimir V. Chesnokov ◽  
Pavel P. Dik ◽  
Aleksandra S. Chichkan

Specific features of the catalytic tar cracking in the presence of formic acid, BEA zeolite and 8% Ni-2.5% Mo/Sibunit catalyst were studied at 350 °C and 1.0 MPa pressure. The obtained results evidenced that formic acid can be used as a hydrogen donor during catalytic reactions. The formic acid addition made it possible to perform efficient hydrocracking of heavy feed such as tar. It was found that both the tar conversion and selectivity to light (gasoline-diesel) fractions grew in the sequence: tar < (tar - formic acid) < (tar - formic acid - BEA zeolite) < (tar - formic acid - BEA zeolite - 8% Ni-2.5% Mo/Sibunit catalyst). Furthermore, significantly lower concentrations of impurities containing sulfur and nitrogen were observed for the (tar - formic acid - BEA zeolite - 8% Ni-2.5% Mo/Sibunit catalyst) system. For example, the sulfur and nitrogen concentrations in the tar precursor were 1.50% and 0.86%, respectively. Meanwhile, their concentrations in the liquid products after the catalytic cracking were 0.73% and 0.18%, respectively.

Author(s):  
Marina V. Mozhayskaya ◽  
Galina S. Pevneva ◽  
Vladimir G. Surkov

The study cracking of a mixture of mechanically activated oil shale (MO OSh) and fuel oil, a mixture of demineralized MO GS and fuel oil has been investigated. The data on the composition of liquid products showed that after the removal of mineral components, oil shale is more easily destroyed due to the release of kerogen. It is shown that in the obtained liquid products of the cracking of the mixture of fuel oil – demineralized MO OSh, the proportion of oils increases to 74.6 % wt. In the composition of gaseous products of cracking, the amount of hydrogen, methane and ethane is noticeably reduced. According to the data on the fractional composition of liquid products, it was found that during the cracking of mixtures of fuel oil and MO HS, after the removal of carbonates and silicates, the proportion of gasoline and diesel fractions inc


2019 ◽  
Vol 4 (1) ◽  
pp. 145-151 ◽  
Author(s):  
Peddinti Nagaiah ◽  
Paleti Gidyonu ◽  
Muppala Ashokraju ◽  
Madduluri Venkata Rao ◽  
Prathap Challa ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 553 ◽  
Author(s):  
Karolina A. Chalupka ◽  
Jacek Grams ◽  
Pawel Mierczynski ◽  
Malgorzata I. Szynkowska ◽  
Jacek Rynkowski ◽  
...  

A goal of this work was to investigate the influence of the preparation procedure and activation conditions (reduction temperature and reducing medium: pure hydrogen (100% H2) or hydrogen-argon mixture (5% H2-95% Ar)) on the activity of Co-containing BEA zeolites in Fischer–Tropsch synthesis. Therefore, a series of CoBEA zeolites were obtained by a conventional wet impregnation (Co5.0AlBEA) and a two-step postsynthesis preparation procedure involving dealumination and impregnation steps (Co5.0SiBEA). Both types of zeolites were calcined in air at 500 °C for 3 h and then reduced at 500, 800 and 900 °C for 1 h in 100 % H2 and in 5% H2–95% Ar mixture flow. The obtained Red-C-Co5.0AlBEA and Red-C-Co5.0SiBEA catalysts with various physicochemical properties were tested in Fischer–Tropsch reaction. Among the studied catalysts, Red-C-Co5.0SiBEA reduced at 500 °C in pure hydrogen was the most active, presenting selectivity to liquid products of 91% containing mainly C7–C16 n-alkanes and isoalkanes as well as small amount of olefins, with CO conversion of about 11%. The Red-C-Co5.0AlBEA catalysts were not active in the Fischer–Tropsch synthesis. It showed that removal of aluminum from the BEA zeolite in the first step of postsynthesis preparation procedure played a key role in the preparation of efficient catalysts for Fischer–Tropsch synthesis. An increase of the reduction temperature from 500 to 800 and 900 °C resulted in two times lower CO conversion and a drop of the selectivity towards liquid products (up to 62%–88%). The identified main liquid products were n-alkanes and isoalkanes. The higher activity of Red-C-Co5.0SiBEA catalysts can be assigned to good dispersion of cobalt nanoparticles and thus a smaller cobalt nanoparticles size than in the case of Red-C-Co5.0AlBEA catalyst.


2021 ◽  
Vol 1 (1-2) ◽  
pp. 7-14
Author(s):  
V. V. Chesnokov ◽  
A. S. Chichkan ◽  
V. N. Parmon

Tar carbonization was studied in the absence or presence of the 7% Ni/CNT catalyst. It was shown that tar carbonization at a temperature of 350 °С without the catalyst leads to the formation of gaseous and liquid products and oil coke. Thermolysis products are formed via the separation of lateral hydrocarbon chains from the initial polyaromatic hydrocarbons. Gaseous products consist of С1-С6 hydrocarbons and sulfur-containing gases H2S and COS. Fractional composition of the liquid thermolysis products was studied. It was found that 50 % of the liquid products are represented by gasoline and diesel fractions. The 7% Ni/CNT catalyst was prepared by impregnation. The effect of this catalyst on the tar carbonization in the temperature range of 300–550 °С was studied. The addition of the 7% Ni/CNT catalyst to tar increased its yield and decreased the sulfur content due to partial conversion of sulfur to hydrogen sulfide and COS, which are removed with the gas phase. The electron microscopy study showed that the oil coke obtained upon catalytic tar carbonization is reinforced with carbon nanotubes.


Sign in / Sign up

Export Citation Format

Share Document