scholarly journals Comparison of Factorial and Latin Hypercube Sampling Designs for Meta-Models of Building Heating and Cooling Loads

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 512
Author(s):  
Younhee Choi ◽  
Doosam Song ◽  
Sungmin Yoon ◽  
Junemo Koo

Interest in research analyzing and predicting energy loads and consumption in the early stages of building design using meta-models has constantly increased in recent years. Generally, it requires many simulated or measured results to build meta-models, which significantly affects their accuracy. In this study, Latin Hypercube Sampling (LHS) is proposed as an alternative to Fractional Factor Design (FFD), since it can improve the accuracy while including the nonlinear effect of design parameters with a smaller size of data. Building energy loads of an office floor with ten design parameters were selected as the meta-models’ objectives, and were developed using the two sampling methods. The accuracy of predicting the heating/cooling loads of the meta-models for alternative floor designs was compared. For the considered ranges of design parameters, window insulation (WDI) and Solar Heat Gain Coefficient (SHGC) were found to have nonlinear characteristics on cooling and heating loads. LHS showed better prediction accuracy compared to FFD, since LHS considers the nonlinear impacts for a given number of treatments. It is always a good idea to use LHS over FFD for a given number of treatments, since the existence of nonlinearity in the relation is not pre-existing information.

2018 ◽  
Vol 38 (2) ◽  
pp. 741-749
Author(s):  
Sajad Abasnezhad ◽  
Nima Soltani ◽  
Elin Markarian ◽  
Hamed Aghabalayi Fakhim ◽  
Hamed Khezerloo

2017 ◽  
Vol 42 (3) ◽  
pp. 220-238 ◽  
Author(s):  
Lakshya Sharma ◽  
K Kishan Lal ◽  
Dibakar Rakshit

Residential and commercial buildings together account for one-third of world’s final energy consumption, thus making energy management in buildings of considerable significance. Passive design concept that depends on climate and location can be used as an effective and economical method to reduce the energy consumption in buildings. Seven cities in India, each representative of different geographic and climatic conditions, were selected for analysis. This article studies how the peak cooling and heating load are affected by varying some of the passive design parameters for each of the seven cities. The parameters varied are wall insulation thickness, roof insulation thickness, overhang depth, window orientation, and window-to-wall ratio. Results show that optimized passive design could reduce the peak cooling and heating loads by about 50%. Shading reduces cooling loads but is found to increase heating loads. In some of the locations, both heating in winter and cooling in summer are needed and designers should adopt appropriate passive measures depending on the location. Also for the same building, evaluation of shading is done in the context of lighting energy savings. An algorithm has been developed to iteratively alter and analyze set of roller blind positions to maintain visual comfort; as a result, the corresponding potential annual energy savings due to lighting were estimated. It was also observed that even after providing visual comfort to the occupants, energy savings only reduced by approximately 1% as compared to the case when visual comfort was overlooked.


2014 ◽  
Vol 20 (5) ◽  
pp. 714-723 ◽  
Author(s):  
Hendrik Voll ◽  
Erkki Seinre

Modern office building designs tend to increase the window share per facade to make the building more impressive with extensive visibility and well daylit rooms. In general, an increased window share results in higher energy usage and higher costs of heating and cooling, but these disadvantages can be reduced with a more careful design. The aim of this paper is to show the influence of window design and room layout on heating and cooling demand and daylight availability in office buildings in northern Europe. The results in the paper are based on design calculations for two different room types and daylight measurements on two room scale models in a daylight laboratory. The calculations show the influence of window design parameters on the cooling and heating demand. The daylight measurements show the influence of window design parameters on the availability of daylight. The results have then been combined to show a feasible window design regarding daylight availability and the resulting cooling and heating demands for different window orientations. The results show that in most cases it is possible to find a combination of window share and window solar factor that is feasible with regard to daylight as well as cooling and heating. The main finding is that there is a smaller or wider range of feasible designs for different window orientations.


2011 ◽  
Vol 368-373 ◽  
pp. 3717-3720 ◽  
Author(s):  
Yi Wei Liu ◽  
Wei Feng

This paper draws upon passive cooling and passive solar techniques to integrate them into a common multi-purpose building in South China so as to optimize the indoor thermal environment and reduce building energy consumption. Meanwhile, it also discusses how to combine architecture design and sustainable techniques reasonably. In order to prove that these sustainable design options are effective, CFD, Ecotect and Solpass software should be used to simulate or calculate the heating and cooling loads, discomfort hours for both of the existing and advanced building. Though comparison it is obviously that the indoor discomfort hours decrease by nearly one third by passive cooling system, while passive solar techniques can reduce 25% annual heating loads.


2014 ◽  
Vol 899 ◽  
pp. 11-15 ◽  
Author(s):  
Nargjil Saipi ◽  
Matthias Schuss ◽  
Ulrich Pont ◽  
Ardeshir Mahdavi

This paper compares calculated and measured energy use data (for space heating and cooling) pertaining to a hospital building in Austria. The building's existing energy certificate as well as monitored heating and cooling demand information were acquired from the hospitals administration. Moreover, the energy performance of the building was modeled using a numeric simulation application. Thereby, an extensive effort was made to define model input assumptions (building construction, weather data, internal gains) based on actual circumstances in reality. The results of the study suggest that calculated (energy certificate) and simulated heating loads were reasonably close to actual values, whereas in case of cooling loads considerable discrepancies were observed.


2020 ◽  
Vol 12 (5) ◽  
pp. 1829 ◽  
Author(s):  
Tiantian Du ◽  
Sabine Jansen ◽  
Michela Turrin ◽  
Andy van den Dobbelsteen

As one of the most important design tasks of building design, space layout design affects the building energy performance (BEP). In order to investigate the effect, a literature review of relevant papers was performed. Ten relevant articles were found and reviewed in detail. First, a methodology for studying the effects of space layouts on BEP were proposed regarding design variables, energy indicators and BEP calculation methods, and the methodologies used in the 10 articles were reviewed. Then, the effects of space layouts on energy use and occupant comfort were analysed separately. The results show that the energy use for heating, cooling, lighting and ventilation is highly affected by space layouts, as well as thermal and visual comfort. The effects of space layouts on energy use are higher than on occupant comfort. By changing space layouts, the resulting reductions in the annual final energy for heating and cooling demands were up to 14% and 57%, respectively, in an office building in Sweden. The resulting reductions in the lighting demand of peak summer and winter were up to 67% and 43%, respectively, for the case of an office building in the UK, and the resulting reduction in the air volume supplied by natural ventilation was 65%. The influence of other design parameters, i.e., occupancy and window to wall ratio, on the effects of space layouts on BEP was also identified.


Sign in / Sign up

Export Citation Format

Share Document