Integrating Passive Cooling and Solar Techniques into the Existing Building in South China

2011 ◽  
Vol 368-373 ◽  
pp. 3717-3720 ◽  
Author(s):  
Yi Wei Liu ◽  
Wei Feng

This paper draws upon passive cooling and passive solar techniques to integrate them into a common multi-purpose building in South China so as to optimize the indoor thermal environment and reduce building energy consumption. Meanwhile, it also discusses how to combine architecture design and sustainable techniques reasonably. In order to prove that these sustainable design options are effective, CFD, Ecotect and Solpass software should be used to simulate or calculate the heating and cooling loads, discomfort hours for both of the existing and advanced building. Though comparison it is obviously that the indoor discomfort hours decrease by nearly one third by passive cooling system, while passive solar techniques can reduce 25% annual heating loads.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 512
Author(s):  
Younhee Choi ◽  
Doosam Song ◽  
Sungmin Yoon ◽  
Junemo Koo

Interest in research analyzing and predicting energy loads and consumption in the early stages of building design using meta-models has constantly increased in recent years. Generally, it requires many simulated or measured results to build meta-models, which significantly affects their accuracy. In this study, Latin Hypercube Sampling (LHS) is proposed as an alternative to Fractional Factor Design (FFD), since it can improve the accuracy while including the nonlinear effect of design parameters with a smaller size of data. Building energy loads of an office floor with ten design parameters were selected as the meta-models’ objectives, and were developed using the two sampling methods. The accuracy of predicting the heating/cooling loads of the meta-models for alternative floor designs was compared. For the considered ranges of design parameters, window insulation (WDI) and Solar Heat Gain Coefficient (SHGC) were found to have nonlinear characteristics on cooling and heating loads. LHS showed better prediction accuracy compared to FFD, since LHS considers the nonlinear impacts for a given number of treatments. It is always a good idea to use LHS over FFD for a given number of treatments, since the existence of nonlinearity in the relation is not pre-existing information.


2004 ◽  
Vol 36 (12) ◽  
pp. 1265-1272 ◽  
Author(s):  
Nan Zhou ◽  
Weijun Gao ◽  
Masaru Nishida ◽  
Hiroki Kitayama ◽  
Toshio Ojima

2014 ◽  
Vol 899 ◽  
pp. 11-15 ◽  
Author(s):  
Nargjil Saipi ◽  
Matthias Schuss ◽  
Ulrich Pont ◽  
Ardeshir Mahdavi

This paper compares calculated and measured energy use data (for space heating and cooling) pertaining to a hospital building in Austria. The building's existing energy certificate as well as monitored heating and cooling demand information were acquired from the hospitals administration. Moreover, the energy performance of the building was modeled using a numeric simulation application. Thereby, an extensive effort was made to define model input assumptions (building construction, weather data, internal gains) based on actual circumstances in reality. The results of the study suggest that calculated (energy certificate) and simulated heating loads were reasonably close to actual values, whereas in case of cooling loads considerable discrepancies were observed.


Author(s):  
Michael Jochum ◽  
Gokulakrishnan Murugesan ◽  
Kelly Kissock ◽  
Kevin Hallinan

Exergy is destroyed when work is degraded by friction and turbulence and when heat is transferred through finite temperature differences. Typical HVAC systems use a combination of high quality energy from combustion and electricity to overcome relatively small temperature differences between the building and the environment. It is possible to achieve the heating/cooling necessary to maintain comfort in a building without these high quality energy sources and their high potential-energy destruction. A low-exergy heating and cooling system seeks to better match the quality of energy to the loads of the building and thus to minimize exergy destruction and increase the exergetic efficiency of the building’s heating and cooling system. The method described here for low exergy building system design begins by minimizing overall heating and cooling loads using a tight, highly-insulated envelope and passive solar design strategies. Next a low-exergy heating and cooling system is designed that uses hydronic radiant heating and cooling in floors, along with high thermal mass. The large surface area of the floors enable low fluid flow rates and relatively small temperature differences to achieve heat transfer rates that would traditionally be driven by high temperature differentials and flows. The building uses a solar wall to passively drive ventilation requirements and earth tubes to condition the ventilation air. High thermal mass in the floor reduces peak loads and eliminates the need for solar thermal storage tanks. Thus, this paper begins to explore the practical limits of low-exergy design.


2019 ◽  
Vol 111 ◽  
pp. 01078 ◽  
Author(s):  
Rana M. Mahmoud ◽  
Mohsen Sharifi ◽  
Eline Himpe ◽  
Marc Delghust ◽  
Jelle Laverge

Modelling and simulation of building stock is a valuable source of information for investigating the feasibility of implementing new heating and cooling system technologies. Some of these technologies have oversizing problem as the designers rely on their experience and previous knowledge. Building stock modelling can provide a solution for more accurate designing process. However, some of the current building stock modelling methods uses a representative building which can exclude whole ranges of the different combinations of building geometry and physical properties that can be crucial for heating and cooling load estimation. Therefore, we developed a methodology that allows faster and accurate building energy simulation (BES) multizone models from general building information of the whole building stock that is able to estimate load duration. This will help engineers and designers to decide on the system sizing at the early design stages. This paper presents first, the process of generating dynamically heating and cooling load duration curves by using BES-models from general geometrical data of the building stock. Second, we examine the process on a sample of the building stock where geometrical and physical parameters were varied. The workflow of the process has worked successfully, generating heating and cooling duration curves for 14 case studies. We observed that heating and cooling loads are highly influenced by different combinations of parameters. High glazing percentage affects highly the heat losses, thus more heating loads. Besides, for a west oriented building, the high glazing percentage combined with high internal gains can be the reason for significant cooling loads. In next steps, we are going to extend the current methodology to cover different building typologies within different climates across Europe.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Lei He ◽  
Bo Lei ◽  
Haiquan Bi ◽  
Tao Yu

MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV). The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.


Author(s):  
YoungHum Cho ◽  
Gang Wang ◽  
Mingsheng Liu

Terminal boxes control space conditions in variable air volume (VAV) air-handling unit (AHU) systems. Terminal boxes either modulate airflow with a control damper or adjust discharge air temperature with a reheat coil. Terminal boxes will have a significant amount of simultaneous heating and cooling and AHUs will consume more fan power if the minimum airflow is higher than required. On the other hand, conditioned space will have indoor air quality (IAQ) problems with less air circulation if the minimum airflow is less than required. The objective of this study is to optimize the minimum airflow ratio to improve thermal environment and save energy consumption. In this study, the problem of current fixed minimum airflow ratio of terminal box is analyzed and variable minimum airflow ratio as an alternative is suggested. The results of this study show that variable minimum airflow ratio can stably maintain the set room air temperature and reduce energy consumption for varying heating loads compared to the conventional fixed minimum airflow ratio.


2018 ◽  
Author(s):  
Augi Sekatia ◽  
Bangun I. R. Harsritanto ◽  
Erni Setyowati ◽  
Gagoek Hardiman

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3298
Author(s):  
Gianpiero Colangelo ◽  
Brenda Raho ◽  
Marco Milanese ◽  
Arturo de Risi

Nanofluids have great potential to improve the heat transfer properties of liquids, as demonstrated by recent studies. This paper presents a novel idea of utilizing nanofluid. It analyzes the performance of a HVAC (Heating Ventilation Air Conditioning) system using a high-performance heat transfer fluid (water-glycol nanofluid with nanoparticles of Al2O3), in the university campus of Lecce, Italy. The work describes the dynamic model of the building and its heating and cooling system, realized through the simulation software TRNSYS 17. The use of heat transfer fluid inseminated by nanoparticles in a real HVAC system is an innovative application that is difficult to find in the scientific literature so far. This work focuses on comparing the efficiency of the system working with a traditional water-glycol mixture with the same system that uses Al2O3-nanofluid. The results obtained by means of the dynamic simulations have confirmed what theoretically assumed, indicating the working conditions of the HVAC system that lead to lower operating costs and higher COP and EER, guaranteeing the optimal conditions of thermo-hygrometric comfort inside the building. Finally, the results showed that the use of a nanofluid based on water-glycol mixture and alumina increases the efficiency about 10% and at the same time reduces the electrical energy consumption of the HVAC system.


Sign in / Sign up

Export Citation Format

Share Document