Gradient Boosting Ensembles for Predicting Heating and Cooling Loads in Building Design

Author(s):  
Leonardo Goliatt ◽  
Priscila V. Z. Capriles ◽  
Gisele Goulart Tavares
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 512
Author(s):  
Younhee Choi ◽  
Doosam Song ◽  
Sungmin Yoon ◽  
Junemo Koo

Interest in research analyzing and predicting energy loads and consumption in the early stages of building design using meta-models has constantly increased in recent years. Generally, it requires many simulated or measured results to build meta-models, which significantly affects their accuracy. In this study, Latin Hypercube Sampling (LHS) is proposed as an alternative to Fractional Factor Design (FFD), since it can improve the accuracy while including the nonlinear effect of design parameters with a smaller size of data. Building energy loads of an office floor with ten design parameters were selected as the meta-models’ objectives, and were developed using the two sampling methods. The accuracy of predicting the heating/cooling loads of the meta-models for alternative floor designs was compared. For the considered ranges of design parameters, window insulation (WDI) and Solar Heat Gain Coefficient (SHGC) were found to have nonlinear characteristics on cooling and heating loads. LHS showed better prediction accuracy compared to FFD, since LHS considers the nonlinear impacts for a given number of treatments. It is always a good idea to use LHS over FFD for a given number of treatments, since the existence of nonlinearity in the relation is not pre-existing information.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Author(s):  
Roger Hitchin

Policies to reduce carbon emissions are leading to substantial changes in the demand for electricity and to the structure of electricity supply systems, which will alter the cost structure of electricity supply. This can be expected to result in corresponding changes to the price structure faced by customers. This note is an initial exploration of how possible new price structures may impact on HVAC system and building design and use. Changes in the price structure of electricity supply (separately from changes in price levels) can significantly affect the cost-effective design and operation of building services systems; especially of heating and cooling systems. The nature and implications of these changes can have important implications for future system design and operation.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1080
Author(s):  
Mamdooh Alwetaishi ◽  
Omrane Benjeddou

The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue in educational buildings and especially in schools. The major issue in school buildings in Saudi Arabia is that they are a form of prototype school building design (PSBD). As a result, if there is any concern in the design stage and in relation to the selection of building materials, this will spread throughout the region. In addition to that, the design is repeated regardless of the climate variation within the kingdom of Saudi Arabia. This research will focus on the influence of the window to wall ratio on the energy load in various orientations and different climatic regions. The research will use the energy computer tool TAS Environmental Design Solution Limited (EDSL) to calculate the energy load as well as solar gain. During the visit to the sample schools, a globe thermometer will be used to monitor the globe temperature in the classrooms. This research introduces a framework to assist architects and engineers in selecting the proper window to wall ratio (WWR) in each direction within the same building based on adequate natural light with a minimum reliance on energy load. For ultimate WWR for energy performance and daylight, the WWR should range from 20% to 30%, depending on orientation, in order to provide the optimal daylight factor combined with building energy efficiency. This ratio can be slightly greater in higher altitude locations.


2018 ◽  
Vol 38 (2) ◽  
pp. 741-749
Author(s):  
Sajad Abasnezhad ◽  
Nima Soltani ◽  
Elin Markarian ◽  
Hamed Aghabalayi Fakhim ◽  
Hamed Khezerloo

Author(s):  
Frank Butera ◽  
Keith Hewett

Maximising cross ventilation is a low energy method of naturally ventilating and providing heating and cooling to deep plan spaces. Significant reduction in the emission of greenhouse gases can be achieved through minimising the use of mechanical systems in regions with climatic conditions that support the use of natural ventilation. Arup has provided input into the design of a louvered facade for the control of external noise for Brisbane Domestic Airport. A full scale prototype facade was constructed and noise transmission loss measurements were undertaken. The results indicate that significant noise reduction can be achieved to enable compliance with the internal noise limits for airport terminals, whilst using natural ventilation. The findings from this research will directly benefit building designers and innovators in the pursuit of achieving sustainable building design.


Sign in / Sign up

Export Citation Format

Share Document