scholarly journals Effects of Architectural Space Layouts on Energy Performance: A Review

2020 ◽  
Vol 12 (5) ◽  
pp. 1829 ◽  
Author(s):  
Tiantian Du ◽  
Sabine Jansen ◽  
Michela Turrin ◽  
Andy van den Dobbelsteen

As one of the most important design tasks of building design, space layout design affects the building energy performance (BEP). In order to investigate the effect, a literature review of relevant papers was performed. Ten relevant articles were found and reviewed in detail. First, a methodology for studying the effects of space layouts on BEP were proposed regarding design variables, energy indicators and BEP calculation methods, and the methodologies used in the 10 articles were reviewed. Then, the effects of space layouts on energy use and occupant comfort were analysed separately. The results show that the energy use for heating, cooling, lighting and ventilation is highly affected by space layouts, as well as thermal and visual comfort. The effects of space layouts on energy use are higher than on occupant comfort. By changing space layouts, the resulting reductions in the annual final energy for heating and cooling demands were up to 14% and 57%, respectively, in an office building in Sweden. The resulting reductions in the lighting demand of peak summer and winter were up to 67% and 43%, respectively, for the case of an office building in the UK, and the resulting reduction in the air volume supplied by natural ventilation was 65%. The influence of other design parameters, i.e., occupancy and window to wall ratio, on the effects of space layouts on BEP was also identified.

2019 ◽  
Vol 111 ◽  
pp. 04011
Author(s):  
Catalin Lungu ◽  
Florin Baltaretu

In this paper the authors describe a HVAC innovative system using an integrated greenhouse for heating and cooling an office building. The ventilation system allows natural (night) or mechanical ventilation and the passive cooling during the summer, including cold storage in the building structure and the PCM plywood and the refrigeration energy use during the day. Natural ventilation occurs when the wind or the Venturi effect, created by the « hat » that supports the photovoltaic panels, is strong enough; otherwise, a variable speed exhaust fan mounted on top of the building is used. The plants inside the greenhouse can produce O2 under certain conditions necessary for refreshing the ventilation air. The environment of the greenhouse allows air humidification naturally, without the use of humidifiers. If the greenhouse is sufficiently insulated in winter, it can be used in the ventilation process: the air intake from offices through the greenhouse, humidified and enriched in O2 (premixed, if necessary, with fresh air) reaches the general air treatment unit, and then sent back. The process is similar in the summer, but without recirculation, due to the humidity of the air extracted from offices. Stale air humidification enhances the thermal transfer process from the desiccant collector.


Author(s):  
Jingyi Li ◽  
Hong Chen

AbstractThis research focuses on the energy performance of office building in Wuhan. The research explored and predicted the optimal solution of design variables by Multi-Island Genetic Algorithm (MIGA) and RBF Artificial neural networks (RBF-ANNs). Research analyzed the cluster centers of design variable by K-means cluster method. In the study, the RBF-ANNs model was established by 1,000 simulation cases. The RMSE (root mean square error) of the RBF-ANNs model in different energy aspects does not exceed 15%. Comparing to the reference case (the largest energy consumption case in the optimization), the 214 elite cases in RBF-ANNs model save at least 37.5% energy. By the cluster centers of the design variables in the elite cases, the study summarized the benchmark of 14 design variables and also suggested a building energy guidance for Wuhan office building design.


Author(s):  
David J. Sailor ◽  
Prem Vuppuluri

This study presents efforts to analyze how sustainable roofing technologies can contribute to the energy budget of buildings, and the resulting implications for heating and cooling energy use. The data analyzed in this study were obtained from a field experiment performed on a four story warehouse/office building in Portland, Oregon USA. The building’s roof includes a 216 panel, 45.6 kW solar photovoltaic array in combination with 576 m2 of vegetated green roofing. While most of the surface consists of green roof shaded by photovoltaic panels, the roof also has test patches of dark membrane, white membrane and un-shaded green-roofing. Interior and exterior surface temperatures were monitored over a period of two years and heat flux into the building is estimated using a finite difference conduction model. On average, the black roof membrane was the only roof that caused a net heat gain into the building in the summer. In the winter, all four roofing technologies resulted in net heat losses out of the building. Both the PV-shaded and un-shaded green-roofs indicated a net heat loss out of the interior of the building during both the summer and winter. This latter effect is largely a result of green-roof evaporative cooling — which can benefit air conditioning demand in summer but may be undesirable during heating-dominated seasons.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4388
Author(s):  
Esmail Mahmoudi Saber ◽  
Issa Chaer ◽  
Aaron Gillich ◽  
Bukola Grace Ekpeti

Natural ventilation is gaining more attention from architects and engineers as an alternative way of cooling and ventilating indoor spaces. Based on building types, it could save between 13 and 40% of the building cooling energy use. However, this needs to be implemented and operated with a well-designed and integrated control system to avoid triggering discomfort for occupants. This paper seeks to review, discuss, and contribute to existing knowledge on the application of control systems and optimisation theories of naturally ventilated buildings to produce the best performance. The study finally presents an outstanding theoretical context and practical implementation for researchers seeking to explore the use of intelligent controls for optimal output in the pursuit to help solve intricate control problems in the building industry and suggests advanced control systems such as fuzzy logic control as an effective control strategy for an integrated control of ventilation, heating and cooling systems.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 512
Author(s):  
Younhee Choi ◽  
Doosam Song ◽  
Sungmin Yoon ◽  
Junemo Koo

Interest in research analyzing and predicting energy loads and consumption in the early stages of building design using meta-models has constantly increased in recent years. Generally, it requires many simulated or measured results to build meta-models, which significantly affects their accuracy. In this study, Latin Hypercube Sampling (LHS) is proposed as an alternative to Fractional Factor Design (FFD), since it can improve the accuracy while including the nonlinear effect of design parameters with a smaller size of data. Building energy loads of an office floor with ten design parameters were selected as the meta-models’ objectives, and were developed using the two sampling methods. The accuracy of predicting the heating/cooling loads of the meta-models for alternative floor designs was compared. For the considered ranges of design parameters, window insulation (WDI) and Solar Heat Gain Coefficient (SHGC) were found to have nonlinear characteristics on cooling and heating loads. LHS showed better prediction accuracy compared to FFD, since LHS considers the nonlinear impacts for a given number of treatments. It is always a good idea to use LHS over FFD for a given number of treatments, since the existence of nonlinearity in the relation is not pre-existing information.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1080
Author(s):  
Mamdooh Alwetaishi ◽  
Omrane Benjeddou

The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue in educational buildings and especially in schools. The major issue in school buildings in Saudi Arabia is that they are a form of prototype school building design (PSBD). As a result, if there is any concern in the design stage and in relation to the selection of building materials, this will spread throughout the region. In addition to that, the design is repeated regardless of the climate variation within the kingdom of Saudi Arabia. This research will focus on the influence of the window to wall ratio on the energy load in various orientations and different climatic regions. The research will use the energy computer tool TAS Environmental Design Solution Limited (EDSL) to calculate the energy load as well as solar gain. During the visit to the sample schools, a globe thermometer will be used to monitor the globe temperature in the classrooms. This research introduces a framework to assist architects and engineers in selecting the proper window to wall ratio (WWR) in each direction within the same building based on adequate natural light with a minimum reliance on energy load. For ultimate WWR for energy performance and daylight, the WWR should range from 20% to 30%, depending on orientation, in order to provide the optimal daylight factor combined with building energy efficiency. This ratio can be slightly greater in higher altitude locations.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Raed I. Bourisli ◽  
Adnan A. AlAnzi

This work aims at developing a closed-form correlation between key building design variables and its energy use. The results can be utilized during the initial design stages to assess the different building shapes and designs according to their expected energy use. Prototypical, 20-floor office buildings were used. The relative compactness, footprint area, projection factor, and window-to-wall ratio were changed and the resulting buildings performances were simulated. In total, 729 different office buildings were developed and simulated in order to provide the training cases for optimizing the correlation’s coefficients. Simulations were done using the VisualDOE TM software with a Typical Meteorological Year data file, Kuwait City, Kuwait. A real-coded genetic algorithm (GA) was used to optimize the coefficients of a proposed function that relates the energy use of a building to its four key parameters. The figure of merit was the difference in the ratio of the annual energy use of a building normalized by that of a reference building. The objective was to minimize the difference between the simulated results and the four-variable function trying to predict them. Results show that the real-coded GA was able to come up with a function that estimates the thermal performance of a proposed design with an accuracy of around 96%, based on the number of buildings tested. The goodness of fit, roughly represented by R2, ranged from 0.950 to 0.994. In terms of the effects of the various parameters, the area was found to have the smallest role among the design parameters. It was also found that the accuracy of the function suffers the most when high window-to-wall ratios are combined with low projection factors. In such cases, the energy use develops a potential optimum compactness. The proposed function (and methodology) will be a great tool for designers to inexpensively explore a wide range of alternatives and assess them in terms of their energy use efficiency. It will also be of great use to municipality officials and building codes authors.


2018 ◽  
Vol 38 (2) ◽  
pp. 741-749
Author(s):  
Sajad Abasnezhad ◽  
Nima Soltani ◽  
Elin Markarian ◽  
Hamed Aghabalayi Fakhim ◽  
Hamed Khezerloo

Author(s):  
Frank Butera ◽  
Keith Hewett

Maximising cross ventilation is a low energy method of naturally ventilating and providing heating and cooling to deep plan spaces. Significant reduction in the emission of greenhouse gases can be achieved through minimising the use of mechanical systems in regions with climatic conditions that support the use of natural ventilation. Arup has provided input into the design of a louvered facade for the control of external noise for Brisbane Domestic Airport. A full scale prototype facade was constructed and noise transmission loss measurements were undertaken. The results indicate that significant noise reduction can be achieved to enable compliance with the internal noise limits for airport terminals, whilst using natural ventilation. The findings from this research will directly benefit building designers and innovators in the pursuit of achieving sustainable building design.


2018 ◽  
Vol 7 (4) ◽  
pp. 1-27
Author(s):  
Renas K.M. Sherko ◽  
Yusuf Arayici ◽  
Mike Kagioglou

A significant amount of energy is consumed by buildings due to ineffective design decisions with little consideration for energy efficiency. Yet, performance parameters should be considered during the early design phase, which is vital for improved energy performance and lower CO2 emissions. BIM, as a new way of working methodology, can help for performance-based design. However, it is still infancy in architectural practice about how BIM can be used to develop energy efficient design. Thus, the aim is to propose a strategic framework to guide architects about how to do performance-based design considering the local values and energy performance parameters. The research adopts a multi case study approach to gain qualitative and quantitative insights into the building energy performance considering the building design parameters. The outcome is a new design approach and protocol to assist designers to successfully use BIM for design optimization, PV technology use in design, rules-based design and performance assessment scheme reflecting local values.


Sign in / Sign up

Export Citation Format

Share Document