scholarly journals Model-Based Control of Torque and Nitrogen Oxide Emissions in a Euro VI 3.0 L Diesel Engine through Rapid Prototyping

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1107
Author(s):  
Stefano d’Ambrosio ◽  
Roberto Finesso ◽  
Gilles Hardy ◽  
Andrea Manelli ◽  
Alessandro Mancarella ◽  
...  

In the present paper, a model-based controller of engine torque and engine-out Nitrogen oxide (NOx) emissions, which was previously developed and tested by means of offline simulations, has been validated on a FPT F1C 3.0 L diesel engine by means of rapid prototyping. With reference to the previous version, a new NOx model has been implemented to improve robustness in terms of NOx prediction. The experimental tests have confirmed the basic functionality of the controller in transient conditions, over different load ramps at fixed engine speeds, over which the average RMSE (Root Mean Square Error) values for the control of NOx emissions were of the order of 55–90 ppm, while the average RMSE values for the control of brake mean effective pressure (BMEP) were of the order of 0.25–0.39 bar. However, the test results also highlighted the need for further improvements, especially concerning the effect of the engine thermal state on the NOx emissions in transient operation. Moreover, several aspects, such as the check of the computational time, the impact of the controller on other pollutant emissions, or on the long-term engine operations, will have to be evaluated in future studies in view of the controller implementation on the engine control unit.

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4704 ◽  
Author(s):  
Fabio Cococcetta ◽  
Roberto Finesso ◽  
Gilles Hardy ◽  
Omar Marello ◽  
Ezio Spessa

A previously developed model-based controller of torque and nitrogen oxides emissions has been implemented and assessed on a heavy-duty 11 L FPT prototype Cursor 11 diesel engine. The implementation has been realized by means of a rapid prototyping device, which has allowed the standard functions of the engine control unit to be by-passed. The activity was carried out within the IMPERIUM H2020 EU Project, which is aimed at reducing the consumption of fuel and urea in heavy-duty trucks up to 20%, while maintaining the compliance with the legal emission limits. In particular, the developed controller is able to achieve desired targets of brake mean effective pressure (BMEP) (or brake torque) and engine-out nitrogen oxides emissions. To this aim, the controller adjusts the fuel quantity and the start of injection of the main pulse in real-time. The controller is based on a previously developed low-throughput combustion model, which estimates the heat release rate, the in-cylinder pressure, the BMEP (or torque) and the engine-out nitrogen oxide emissions. The controller has been assessed at both steady-state and transient operations, through rapid prototyping tests at the engine test bench and on the road.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 460 ◽  
Author(s):  
Roberto Finesso ◽  
Gilles Hardy ◽  
Alessandro Mancarella ◽  
Omar Marello ◽  
Antonio Mittica ◽  
...  

A real-time combustion model was assessed and applied to simulate BMEP (Brake Mean Effective Pressure) and NOx (Nitrogen Oxide) emissions in an 11.0 L FPT Cursor 11 diesel engine for heavy-duty applications. The activity was carried out in the frame of the IMPERIUM H2020 EU Project. The developed model was used as a starting base to derive a model-based combustion controller, which is able to control indicated mean effective pressure and NOx emissions by acting on the injected fuel quantity and main injection timing. The combustion model was tested and assessed at steady-state conditions and in transient operation over several load ramps. The average root mean square error of the model is of the order of 110 ppm for the NOx simulation and of 0.3 bar for the BMEP simulation Moreover, a statistical robustness analysis was performed on the basis of the expected input parameter deviations, and a calibration sensitivity analysis was carried out, which showed that the accuracy is almost unaffected when reducing the calibration dataset by about 80%. The model was also tested on a rapid prototyping device and it was verified that it features real-time capability, since the computational time is of the order of 300–400 µs. Finally, the basic functionality of the model-based combustion controller was tested offline at steady-state conditions.


Author(s):  
Alex Oliveira ◽  
Junfeng Yang ◽  
Jose Sodre

Abstract This work evaluated the effect of cooled exhaust gas recirculation (EGR) on fuel consumption and pollutant emissions from a diesel engine fueled with B8 (a blend of biodiesel and Diesel 8:92%% by volume), experimentally and numerically. Experiments were carried out on a Diesel power generator with varying loads from 5 kW to 35 kW and 10% of cold EGR ratio. Exhaust emissions (e.g. THC, NOX, CO etc.) were measured and evaluated. The results showed mild EGR and low biodiesel content have minor impact of engine specific fuel consumption, fuel conversion efficiency and in-cylinder pressure. Meanwhile, the combination of EGR and biodiesel reduced THC and NOX up to 52% and 59%, which shows promising effect on overcoming the PM-NOX trade-off from diesel engine. A 3D CFD engine model incorporated with detailed biodiesel combustion kinetics and NOx formation kinetics was validated against measured in-cylinder pressure, temperature and engine-out NO emission from diesel engine. This valid model was then employed to investigate the in-cylinder temperature and equivalence ratio distribution that predominate NOx formation. The results showed that the reduction of NOx emission by EGR and biodiesel is obtained by a little reduction of the local in-cylinder temperature and, mainly, by creating comparatively rich combusting mixture.


2021 ◽  
pp. 146808742110395
Author(s):  
José Galindo ◽  
Vicente Dolz ◽  
Javier Monsalve-Serrano ◽  
Miguel Angel Bernal Maldonado ◽  
Laurent Odillard

The aftertreatment systems used in internal combustion engines need high temperatures for reaching its maximum efficiency. By this reason, during the engine cold start period or engine restart operation, excessive pollutant emissions levels are emitted to the atmosphere. This paper evaluates the impact of using a new cylinder deactivation strategy on a Euro 6 turbocharged diesel engine running under cold conditions (−7°C) with the aim of improving the engine warm-up process. This strategy is evaluated in two parts. First, an experimental study is performed at 20°C to analyze the effect of the cylinder deactivation strategy at steady-state and during an engine cold start at 1500 rpm and constant load. In particular, the pumping losses, pollutant emissions levels and engine thermal efficiency are analyzed. In the second part, the engine behavior is analyzed at steady-state and transient conditions under very low ambient temperatures (−7°C). In these conditions, the results show an increase of the exhaust temperatures of around 100°C, which allows to reduce the diesel oxidation catalyst light-off by 250 s besides of reducing the engine warm-up process in approximately 120 s. This allows to reduce the CO and HC emissions by 70% and 50%, respectively, at the end of the test.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3423 ◽  
Author(s):  
Hu ◽  
d’Ambrosio ◽  
Finesso ◽  
Manelli ◽  
Marzano ◽  
...  

A comparison of four different control-oriented models has been carried out in this paper for the simulation of the main combustion metrics in diesel engines, i.e., combustion phasing, peak firing pressure, and brake mean effective pressure. The aim of the investigation has been to understand the potential of each approach in view of their implementation in the engine control unit (ECU) for onboard combustion control applications. The four developed control-oriented models, namely the baseline physics-based model, the artificial neural network (ANN) physics-based model, the semi-empirical model, and direct ANN model, have been assessed and compared under steady-state conditions and over the Worldwide Harmonized Heavy-duty Transient Cycle (WHTC) for a Euro VI FPT F1C 3.0 L diesel engine. Moreover, a new procedure has been introduced for the selection of the input parameters. The direct ANN model has shown the best accuracy in the estimation of the combustion metrics under both steady-state/transient operating conditions, since the root mean square errors are of the order of 0.25/1.1 deg, 0.85/9.6 bar, and 0.071/0.7 bar for combustion phasing, peak firing pressure, and brake mean effective pressure, respectively. Moreover, it requires the least computational time, that is, less than 50 s when the model is run on a rapid prototyping device. Therefore, it can be considered the best candidate for model-based combustion control applications.


Author(s):  
Matteo Cerutti ◽  
Roberto Modi ◽  
Danielle Kalitan ◽  
Kapil K. Singh

As government regulations become increasingly strict with regards to combustion pollutant emissions, new gas turbine combustor designs must produce lower NOx while also maintaining acceptable combustor operability. The design and implementation of an efficient fuel/air premixer is paramount to achieving low emissions. Options for improving the design of a natural gas fired heavy-duty gas turbine partially premixed fuel nozzle have been considered in the current study. In particular, the study focused on fuel injection and pilot/main interaction at high pressure and high inlet temperature. NOx emissions results have been reported and analyzed for a baseline nozzle first. Available experience is shared in this paper in the form of a NOx correlative model, giving evidence of the consistency of current results with past campaigns. Subsequently, new fuel nozzle premixer designs have been investigated and compared, mainly in terms of NOx emissions performance. The operating range of investigation has been preliminarily checked by means of a flame stability assessment. Adequate margin to lean blow out and thermo-acoustic instabilities onset has been found while also maintaining acceptable CO emissions. NOx emission data were collected over a variety of fuel/air ratios and pilot/main splits for all the fuel nozzle configurations. Results clearly indicated the most effective design option in reducing NOx. In addition, the impact of each design modification has been quantified and the baseline correlative NOx emissions model calibrated to describe the new fuel nozzles behavior. Effect of inlet air pressure has been evaluated and included in the models, allowing the extensive use of less costly reduced pressure test campaigns hereafter. Although the observed effect of combustor pressure drop on NOx is not dominant for this particular fuel nozzle, sensitivity has been performed to consolidate gathered experience and to make the model able to evaluate even small design changes affecting pressure drop.


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Mohammed A. Fayad ◽  

Engine injection strategy and renewable fuel both can improve nitrogen oxides (NOX) and smoke/soot emissions in a common-rail compression ignition (CI) diesel engine. The effects of different postinjection (PI) timings (15, 30, and 45) after top dead center (aTDC) and injection pressures (550 and 650 bar) on pollutant emissions and smoke/soot emissions were investigated for combustion of a renewable fuel (soybean biodiesel). The results showed that the levels of carbon monoxide (CO), hydrocarbons (HCs), and NOX are reduced from the combustion of soybean biodiesel compared to the diesel fuel combustion for different injection strategy. Besides, NOX emission is clearly reduced with retarded PI timing, especially at 45°. It is found that the increasing injection pressure reduced gaseous emissions for both fuels. The combination between biodiesel fuel and injection strategy can provide meaningful improvements in pollutant emissions, as well as enhance the exhaust temperature compared to the diesel fuel. With biodiesel fueling, smoke/soot emissions were reduced from biodiesel combustion (by 19.7%) under different fuel injection timings and pressures rather than from the diesel fuel combustion (by 12.2%).


Author(s):  
Yan Li ◽  
Yigang Wei ◽  
Xueqing Wang ◽  
Hanxiao Xu

Against the backdrop of globalization and trade facilitation, the products consumed by a country are more and more relying on the importation of those products from other countries. Therefore, the pollutant emissions of products associated are transferred from consuming countries to exporting countries, which significantly changes the spatial distribution of global pollutant emissions. The objective of this research is to analyse the embodied nitrogen oxide (NOx) emissions in the trading process between China and the European Union (EU) and to further trace the interindustry and intercountry transfer paths. This study constructs a multiregional input–output (MRIO) model based on the latest EORA global supply chain database. The MRIO model quantitatively analyses the total NOx emissions from the production and consumption ends of China and the EU from 1995 to 2014. Important findings are derived from the empirical results as follows. (1) In 2014, China’s production end emissions were 1824.38 kilotons higher than those of the consumption end. By contrast, the situation in the EU was the opposite, i.e., production end emissions were 1711.97 kilotons lower than those of the consumption end. (2) In the trade between China and the EU, the EU is a net importer of embodied NOx, and China is a net exporter of embodied NOx. In 2014, 2.55% of China’s domestic NOx emissions were transferred to the EU in China-EU trade, accounting for 2.75% of China’s domestic consumption demand. (3) In 2014, Electricity, Gas and Water (397.75 kilotons), Transport (343.55 kilotons), Petroleum, Chemical and non-metallic Products (95.9 kilotons), Metal Products (49.88 kilotons), Textiles and Apparel (26.19 kilotons), are among the industries with the most embodied NOx emissions from China’s net exports during its two-way trade with the EU. (4) In the bilateral trade between the EU and China, many countries are in the state of embodied NOx net import. The top three net importers in 2014 were Germany (169.24 kilotons), Britain (128.11 kilotons), France (103.21 kilotons).


2021 ◽  
Vol 14 (5) ◽  
Author(s):  
Roberto Finesso ◽  
Omar Marello ◽  
Ezio Spessa ◽  
Vincenzo Alfieri ◽  
Adriana Colaiemma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document