scholarly journals Testing the Bioeconomic Options of Transitioning to Solid Recovered Fuel: A Case Study of a Thermal Power Plant in Slovakia

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1720
Author(s):  
Lenka Štofová ◽  
Petra Szaryszová ◽  
Bohuslava Mihalčová

This paper deals with the state and perspectives of bioenergy development in the context of exploiting the potential of available natural resources. We analyse the economic benefits of transitioning to alternative biofuel within the research task in cooperation with the Vojany black coal power plant. Within the applied methodology, a non-parametric data envelopment analysis method was used to confirm the most economically efficient types of fuels used in the combustion process. The assumption of fuel efficiency was confirmed by testing fuel combustion combinations directly in the power plant. The transition to 100% combustion of solid recovered fuel creates the potential for sustainable production of the analysed power plant and compliance with the current emission values of basic pollutants and new stricter limits, which will be binding in the EU from August 2021. The proposed solutions were analysed by Monte Carlo simulation. An estimate of the economic results achieved by the power plant was simulated, assuming a complete transition to solid recovered fuel. The results of the study support the feasibility of creating a circular waste management market, with the Vojany black coal power plant as the largest user of solid recovered fuel in Slovakia and abroad.

2016 ◽  
Vol 20 (4) ◽  
pp. 1161-1169 ◽  
Author(s):  
Ante Marusic ◽  
Drazen Loncar ◽  
Jakov Batelic ◽  
Valdi Frankovic

Expanding implementation of intermittent renewable energy sources has already started to change the role of thermal power plants in energy systems across Europe. Traditionally base load plants are now forced to operate as peaking plants. A familiar transition in upcoming years is expected in Croatia and coal power plant operators are preparing accordingly. To evaluate cycling capabilities and control system operation for flexible operation of selected 210 MW coal plant, series of tests with different load gradients were performed and results were thoroughly analyzed. Two possible ?bottlenecks? are identified, thermal stress in superheater header, and achievable ramping rate considering operational limitations of coal feeders, firing system and evaporator dynamics. Several unexpected readings were observed, usually caused by malfunctioning sensors and equipment, resulting in unexpected oscillations of superheated steam temperature. Based on superheater geometry and experimental data, maximal steam temperature gradient during ramping was evaluated. Since thermal stress was well inside the safety margins, the simulation model of the whole boiler was used to evaluate achievable ramping on electric side.


2016 ◽  
Vol 141 ◽  
pp. 225-234 ◽  
Author(s):  
Selahattin Babat ◽  
Reinhold Spörl ◽  
Jörg Maier ◽  
Günter Scheffknecht

2021 ◽  
Vol 110 ◽  
pp. 103439
Author(s):  
Abdul Rahim Shaikh ◽  
Qinhui Wang ◽  
Yi Feng ◽  
Zohaib Sharif ◽  
Long Han ◽  
...  

Author(s):  
Roger H Bezdek ◽  

This paper assesses the relative economic and jobs benefits of retrofitting an 847 MW USA coal power plant with carbon capture, utilization, and storage (CCUS) technology compared to replacing the plant with renewable (RE) energy and battery storage. The research had two major objectives: 1) Estimate the relative environmental, economic, and jobs impacts of CCUS retrofit of the coal plant compared to its replacement by the RE scenario; 2) develop metrics that can be used to compare the jobs impacts of coal fueled power plants to those of renewable energy. The hypotheses tested are: 1) The RE option will reduce CO2 emissions more than the CCUS option. We reject this hypothesis: We found that the CCUS option will reduce CO2 emissions more than the RE option. 2) The RE option will generate greater economic benefits than the CCUS option. We reject this hypothesis: We found that the CCUS option will create greater economic and jobs benefits than the RE option. 3) The RE option will create more jobs per MW than the CCUS option. We reject this hypothesis: We found that the CCUS option will create more jobs per MW more than the RE option. We discuss the implications of these findings.


Sign in / Sign up

Export Citation Format

Share Document