scholarly journals Dynamics of Electricity Production against the Backdrop of Climate Change: A Case Study of Hydropower Plants in Poland

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3427
Author(s):  
Katarzyna Kubiak-Wójcicka ◽  
Leszek Szczęch

Renewable energy sources (RES) play an important role in the European Union’s energy sector as a result of the energy policy framework adopted. Its share in the final energy consumption varies depending on the country and the adopted energy policy. The article presents the structure of electricity production from renewable energy sources in Poland in the years 2002–2019. It was found that the share of energy production from hydroelectric power plants in Poland in relation to the amount of energy produced from renewable energy sources in the analyzed years has strongly decreased. The reason for this state was an increase in the production of energy coming from wind and biomass energy combined with an increase in subsidies for these energy producers. Additionally, unstable hydrological conditions, mainly low river flows, may be the reason for the low share of energy produced in power plants. As a case study, data for five small hydropower plants (SHP) located on the Gwda river (north-western Poland) were analyzed. Electricity production volumes were analyzed depending on the size of the Gwda river flow. It was found that the lower amount of electricity produced at SHPs on the Gwda river is mainly due to lower flows in the river. In the future, unstable electricity production from renewable energy sources may have a significant impact on achieving Poland’s energy targets in 2030.

2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Aleksandra Dedinec ◽  
Igor Tomovski ◽  
Ljupčo Kocarev

This paper is motivated by a large tendency of shift towards low emission electricity production, which can be achieved by substituting the conventional energy sources by renewable energy sources. Therefore, a share of renewable energy sources is continually growing. However, large-scale integration of renewable energy sources into the power system is a challenging task, since it depends on a balance between demand and supply at any time and because of the nature of renewable energy sources. The production from some sources such as the photovoltaic and wind power plants fluctuates depending on meteorological conditions, so it cannot be regulated. However, large hydropower plants can be regulated, so they are suitable for electricity balancing. In this paper, an optimization model is set for a system with 100 % renewable energy sources, which includes models for correlation of meteorological data and the production of electricity from different variable renewable energy sources. The resulting model gives an optimal ratio of production of variable renewable energy sources, which depends on the share of these sources in the total electricity production. The objective function of this optimization problem is to minimize the excess and lack of electricity production. For this purpose, hourly data for electricity consumption and hourly meteorological data are included. The results show that if only wind and photovoltaic power plants are considered, for the case of Macedonia, this optimum is found at 72% wind and 28% photovoltaic power production. However, if the already installed capacity of the big hydropower plants and the maximal potential of the small hydropower plants which make together 30% of the total installed capacity is taken into account, the optimal ratio of production from the other sources is: 50% wind power generation and 20% photovoltaic power generation.


2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Aleksandra Kanevče ◽  
Igor Tomovski ◽  
Ljubčo Kocarev

In this paper we analyze the impact of the renewable energy sources on the overall electric power system of the Republic of Macedonia. Specifically, the effect of the photovoltaic power plants is examined. For this purpose we developed an electricity production optimization model, based on standard network flow model. The renewable energy sources are included in the model of Macedonia based on hourly meteorological data. Electricity producers that exist in 2012 are included in the base scenario. Two more characteristic years are analyzed, i.e. 2015 and 2020. The electricity producers planned to be constructed in these two years (which include the renewable energy sources) are also included. The results show that the renewable energy sources introduce imbalance in the system when the minimum electricity production is higher than the electricity required by the consumers. But, in these critical situations the production from photovoltaic energy sources is zero, which means that they produce electricity during the peak load, and do not produce when the consumption is at minimum.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3542
Author(s):  
Paweł Tomczyk ◽  
Mirosław Wiatkowski

Hydropower in Europe is playing an increasingly important role as a renewable source of energy. Its share of the final energy consumption varies from country to country, posing different challenges in each. The European Union member states are obliged, according to energy policy, to increase the share of renewable energy. This article presents the challenges related to the development of hydropower in four countries with different shares of domestic electricity production from hydropower plants: Albania (100% share in 2019), Slovenia (25.7%), Poland (1.1%), and Estonia (0.3%). Particular attention is paid to the issues of rational management of water resources in connection to Europe’s energy policy. As a result of the case study analysis, the challenges in the development of hydropower are identified, as well as ways to solve them. In addition, a comprehensive analysis of the impact of social, economic, environmental and climate change factors on the development of hydropower was conducted. At present, whether the assumed goals of the European Union’s energy policy will be achieved is impossible to determine for the whole of Europe. Achieving these goals will be possible only after individual countries prepare comprehensive reports on the topics of renewable energy sources, including hydropower.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8473
Author(s):  
Izabela Godyń ◽  
Anna Dubel

Hydropower as stable power installations play an important role among renewable energy sources. Yet, their share in renewable energy is small. Currently, it is only 10% of energy from renewable energy sources (RES), compared to 27% in 2010. Therefore, the aim of this paper is to assess the RES support schemes in Poland related to hydropower, such as green certificates, auctions and FIT, with the use of the Levelized Cost of Electricity (LCOE) analysis in order to determine which support scheme is best incentivizing hydropower development. The evolution of the hydropower support scheme in Poland is presented. The total LCOE and possible revenues from support systems for various segments of hydropower installations are graphically analyzed for two analysis periods (15 and 50 years) and for two discount rates (7% and 11.4%). The analysis shows the great importance of the support schemes in the profitability of the hydropower plants investments. The LCOE graphical analysis proves to be suitable for showing sensitivity analysis of capital and operating costs of various sizes of hydropower plants. The analysis shows that the LCOE in micro-power plants is usually higher than the support and revenues available in the green certificates or auctions or FIT schemes in Poland.


2021 ◽  
Vol 18 (4) ◽  
pp. 28-47
Author(s):  
Yu. I. Sokolov

The article analyzes the problems and risks of new-fangled renewable energy sources in the 21st century, which can radically change the energy picture of the world and to a certain extent reduce the risk of climate change. However, energy generation from wind is usually available 25—35% of the time, from the sun — 10—25%.Renewable energy sources (RES) face the problem of accumulating or supporting capacities that should replace the unstable generation of RES at the time of inevitable failures. RES cannot exist without excess reserve capacities on traditional energy carriers that can quickly increase and reduce electricity production. Abandoning hydrocarbons in the next 30—50 years looks unrealistic if countries want to maintain their competitiveness. The growth of the share of RES in the global energy balance is an extremely politicized phenomenon.The development of renewable generation creates risks for consumers. Especially for large ones. One of these risks is associated with the intermittent, unstable nature of renewable generation, which in recent years has been understood mainly as solar and wind power plants. In addition, to produce more solar panels, wind turbines and batteries for electric vehicles, humanity will need more specific resources — rare earth metals. The production of these metals is unsafe for the environment. It involves the consumption of a huge amount of water and electrical energy.Renewable energy sources may dominate, but it will take centuries. Demand is already growing, but fossil fuels will live long enough.


Author(s):  
Petro Lezhniuk ◽  
Olha Buslavets ◽  
Olena Rubanenko

This article considers the features of the development of renewable energy sources in electrical networks. The main changes in the functional properties of power systems, which include a significant reduction in electricity consumption, change in the structure of electricity consumption, rapid increase in the installed capacity of solar and wind power plants. Electricity consumption in 2020 is almost halved compared to 1990 (from 227 to 119 billion kWh) and as a consequence the share of semi-peak thermal generation, which gave the power system basic flexibility, has significantly decreased (from 71 % in 1990 to 35 % in 2020) and at the same time the share of nuclear generation, which operates in base mode, has increased (from 25 % to 51 %). In particular, consumption by industry with a stable load schedule, decreased (from 146 billion kWh (64 %) to 49 billion kWh (42 %)). At the same time, the demand for electricity by the households, whose consumption profile of which is characterized by significant daily unevenness and sensitivity to meteorological factors, has significantly increased (from 21 billion kWh (9 %) to 37 billion kWh (31 %)). Therefore, the article analyses the preconditions for the problem of flexible generation and explores possible ways to solve them. The optimal composition of electricity generation for Ukraine in the period 2021–2025 is proposed, which provides for the preservation and even increase by optimizing the repair campaign of the share of electricity production by nuclear power plants, the introduction of additional 2–2.5 GW of highly flexible generation and up to 2 GW storage systems (taking into account the pumped-storage power plant), as well as a gradual evolutionary decline in both installed capacity and electricity production by semi-peak coal-fired power plants and maintaining a policy of decarbonisation to ensure its own energy security. A comprehensive approach to compensating for the instability of renewable energy sources generation has been developed, which consists in minimizing the cost of power redundancy in various available ways. The problem of cost optimization for ways to compensate for the instability of renewable energy sources generation is solved by the method of criterion programming. The impact of each backup method on total costs is determined using sensitivity theory.


2007 ◽  
Vol 11 (3) ◽  
pp. 115-123 ◽  
Author(s):  
Anastasia Zabaniotou ◽  
Vicky Skoulou ◽  
Georgios Koufodimos ◽  
Zissis Samaras

Biomass energy potential is addressed to be the most promising among the renewable energy sources, due to its spread and availability worldwide. Apart form that, biomass has the unique advantage among the rest of renewable energy sources, to be able to provide solid, liquid, and gaseous fuels that can be stored, transported, and utilized, far away from the point of origin. For the northern region of Macedonia in Greece, biomass utilization is considered to be a major issue, due to the considerably intensive regional agricultural activities. Wood by-products, fruit cores, rice husk and cotton gin waste provide a promising energy source for the region. The energy potential of the available agricultural biomass produced in the region is much enough to cover the 10% of the annual oil consumption utilized for thermal applications. However, the cost of energy utilization of biomass is considerably high due to the high cost of the logistics concerning the collection, transport, and storage of biomass. The available utilization technologies developed, to handle efficiently all different species of biomass, cover a wide technological range. One of the most promising technologies involving thermal treatment of biomass and the production of a gaseous fuel (biogas) for industrial heat applications and electricity production, is the thermo chemical conversion. In the present work, an investigation concerning biomass potential for energy production in the region of central Macedonia in Greece, utilizing several locally produced biomass species, is conducted. Emphasis is put on the energy utilization of agricultural by-products and residues. Agricultural sector is of great importance due to the considerably intensive agricultural activities in the region of Central Macedonia. .


2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Maja Đurović Petrović ◽  
Žarko Stevanović ◽  
Borislav Grubor

At the end of 2012 and the beginning of 2013, the Serbian Government issued the new national regulations in order to provide an acceptable legislation framework to achieve 2020 targets of 27% increase of total renewable energy sources share in the gross final energy consumption, relative to 2009. The target of a 37% increase relates to participation of renewable energy sources in electricity production. It requires construction of new significant capacities of renewable energy power plants as clearly defined in the National Action Plan for Renewable Energy Sources. This paper comprises critical analyses of targeted new installed capacity of renewable energy power plants for electricity production from different point of views, such as: new national energy policy, new national regulations, renewable energy sources potential in Serbia, efficiency of power plants and the investment financial models. According to the new national energy policy identified in the National Action Plan for Renewable Energy Sources, it is concluded that the new regulations related to the construction of new renewable energy power plants is completed, particularly concerning the investment security, provision of green electricity market, status of green electricity producer, and significant reduction of time for administrative procedures required to obtain a building permit. Particularly, the real wind potential in Serbia, based on the measured data over the past ten years of measurement campaigns at more than thirty locations, has been used to correct the targeted installed capacity of wind power plants.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Tomislav M. Pavlović ◽  
Ivana S. Radonjić ◽  
Dragoljub Lj. Mirjanić ◽  
Darko Divnić

The paper provides information on renewable energy sources (RES) and legislation related to the RES generated electricity in Serbia and the Republic of Srpska. In Serbia, hydropower, wind energy, solar energy, biomass and biogas are used for the RES generated electricity, whereas hydropower, solar energy, biomass and biogas are utilized in the Republic of Srpska. The paper gives an overview of the power of RES power plants and the percentage share of the thermal power plants and RES power plants in electricity production and the guaranteed (incentive) prices for RES generated electricity in Serbia and the Republic of Srpska. Furthermore, legal regulations related to the production of electricity from RES in Serbia and the Republic of Srpska are given. In the conclusion, it is pointed out that RES is increasingly used in Serbia and the Republic of Srpska for the production of electricity, that there are appropriate legal regulations and guarantees (incentive prices) for electricity generated by RES power plants.


Sign in / Sign up

Export Citation Format

Share Document