scholarly journals Prospective of Upfront Nitrogen (N2) Removal in LNG Plants: Technical Communication

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3616
Author(s):  
Fares Almomani ◽  
Asmaa Othman ◽  
Ajinkya Pal ◽  
Easa I. Al-Musleh ◽  
Iftekhar A. Karimi

Conventional natural gas (NG) liquefaction processes remove N2 near the tail of the plant, which limits production capacity and decreases energy efficiency and profit. Engineering calculations suggest that upfront N2 removal could have substantial economic benefits on large-scale liquefied natural gas (LNG) processes. This article provides an overview of the most promising technologies that can be employed for upfront N2 removal in the LNG process, focusing on the process selection and design considerations of all currently available upfront N2 removal technologies. The literature review revealed that although adsorption has proven to be a huge success in gas separation processes (efficiency ≥ 90%), most of the available adsorbents are CH4-selective at typical NG conditions. It would be more encouraging to find N2-selective adsorbents to apply in upfront N2 removal technology. Membrane gas separation has shown growing performance due to its flexible operation, small footprint, and reduced investment cost and energy consumption. However, the use of such technology as upfront N2 removal requires multi-stage membranes to reduce the nitrogen content and satisfy LNG specifications. The efficiency of such technology should be correlated with the cost of gas re-compression, product quality, and pressure. A hybrid system of adsorption/membrane processes was proposed to eliminate the disadvantages of both technologies and enhance productivity that required further investigation. Upfront N2 removal technology based on sequential high and low-pressure distillation was presented and showed interesting results. The distillation process, operated with at least 17.6% upfront N2 removal, reduced specific power requirements by 5% and increased the plant capacity by 16% in a 530 MMSCFD LNG plant. Lithium-cycle showed promising results as an upfront N2 chemical removal technology. Recent studies showed that this process could reduce the NG N2 content at ambient temperature and 80 bar from 10% to 0.5% N2, achieving the required LNG specifications. Gas hydrate could have the potential as upfront N2 removal technology if the is process modified to guarantee significant removals of low N2 concentration from a mixture of hydrocarbons. Retrofitting the proposed technologies into LNG plants, design alterations, removal limits, and cost analysis are challenges that are open for further exploration in the near future. The present review offers directions for different researchers to explore different alternatives for upfront N2 removal from NG.

2021 ◽  
Vol 86 ◽  
pp. 103740
Author(s):  
Maria S. Sergeeva ◽  
Nikita A. Mokhnachev ◽  
Dmitry N. Shablykin ◽  
Andrey V. Vorotyntsev ◽  
Dmitriy M. Zarubin ◽  
...  

2018 ◽  
Vol 566 ◽  
pp. 346-366 ◽  
Author(s):  
Álvaro A. Ramírez-Santos ◽  
M. Bozorg ◽  
B. Addis ◽  
V. Piccialli ◽  
C. Castel ◽  
...  

2007 ◽  
Vol 539-543 ◽  
pp. 1403-1408 ◽  
Author(s):  
Isamu Yasuda ◽  
Yoshinori Shirasaki

A membrane reformer is composed of a steam reformer equipped with palladium-based alloy modules in its catalyst bed, and can perform steam reforming reaction and hydrogen separation processes simultaneously, without shift converters and purification systems. It thus can be configured much more compactly and can provide much higher efficiency than the conventional technologies. We have manufactured and tested a world-largest scale membrane reformer with a rated hydrogen production capacity of 40 Nm3/h. The operation test has successfully been proceeding for over 3,000 hours in one of the hydrogen refueling stations in Tokyo, which has demonstrated the potential advantages of the membrane reformer: simple system configuration as benefited by single-step production of high-purity (99.999% level) hydrogen from natural gas, compactness and energy efficiency as high as 70 to 76% under both the rated and partial-load operating conditions. The system has thus been proved to give the highest efficiency in producing hydrogen from natural gas among various competing technologies. The paper will present the latest achievements and the future plan of the membrane reformer technology development.


2014 ◽  
Vol 463 ◽  
pp. 33-40 ◽  
Author(s):  
Yu Huang ◽  
Tim C. Merkel ◽  
Richard W. Baker

2013 ◽  
Vol 333 ◽  
pp. 135-147 ◽  
Author(s):  
Ahmad Abdul Latif ◽  
Jimoh K. Adewole ◽  
Suzylawati Binti Ismail ◽  
Leo Choe Peng ◽  
Abdullah S. Sultan

Natural gas (NG) processing and membrane technology are two very important fields that are of great significance due to increasing demand for energy as well as separation of gas mixtures. While NG is projected to be the number one primary source of energy by 2050, membrane separation is a commercially successful competitor to other separation techniques for energy efficient gas separation processes [1]. Most of the NG produced in the world is coproduced with acid gases such as CO2which need to be removed to increase the caloric value of NG. A comprehensive review of research efforts in CO2separation from natural gas is required to capture details of the current scientific and technological progresses on the development of new membrane materials with better separation performance, and the improvement of properties of the existing ones. This paper presents the progress that has been achieved in eliminating the limitations that dominate the large scale application of membrane materials at the present time. Various polymers that have been developed to resist plasticization and the method employed to fabricate these polymers are highlighted. Also the range of plasticization pressures (together with corresponding selectivities and permeabilities at these pressures) that have so far been achieved by these fabrication methods is presented. It is believed that this review will serve as a good reference source especially for research in design and development of membrane materials with better resistance to CO2-induced plasticization.


2018 ◽  
Vol 183 ◽  
pp. 136-147 ◽  
Author(s):  
Christophe Castel ◽  
Lei Wang ◽  
Jean Pierre Corriou ◽  
Eric Favre

Sign in / Sign up

Export Citation Format

Share Document