scholarly journals The Impact of Atmospheric Precipitation on Wastewater Volume Flowing into the Wastewater Treatment Plant in Nowy Targ (Poland) in Terms of Treatment Costs

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3806
Author(s):  
Piotr Bugajski ◽  
Elwira Nowobilska-Majewska ◽  
Michał Majewski

This study determined the influence of precipitation occurring in the sewerage catchment basin in Nowy Targ (Poland) on the amount of wastewater inflow to the wastewater treatment plant, and determined the costs resulting from the treatment of accidental (rain) water entering the analyzed sewerage system. The research was conducted from 2016 to 2019, for which daily precipitation and average daily wastewater inflows in the so-called dry, normal, and very wet periods were analyzed. The research period was divided into six characteristic intervals in terms of precipitation. It was found that, on days with different precipitation intensity, the amount of accidental water as a proportion of the total amount of wastewater flowing into the plant ranges from 9.6% to 34.1%. The annual costs incurred by the operator resulting from the environmental fee are 1625.8 EUR/year. Alternatively, the costs resulting from financial expenditures for wastewater treatment processes amount to 337,651 EUR/year. The results of the research provide important information for sewage network operators to take effective actions to eliminate illegal connections of roof gutters and/or yard inlets to the sanitary collectors, and to replace the combined sewage system in Nowy Targ with a distributed sewerage system. This would reduce the costs of wastewater treatment and the irregularity of wastewater inflow.

1998 ◽  
Vol 37 (1) ◽  
pp. 347-354 ◽  
Author(s):  
Ole Mark ◽  
Claes Hernebring ◽  
Peter Magnusson

The present paper describes the Helsingborg Pilot Project, a part of the Technology Validation Project: “Integrated Wastewater” (TVP) under the EU Innovation Programme. The objective of the Helsingborg Pilot Project is to demonstrate implementation of integrated tools for the simulation of the sewer system and the wastewater treatment plant (WWTP), both in the analyses and the operational phases. The paper deals with the programme for investigating the impact of real time control (RTC) on the performance of the sewer system and wastewater treatment plant. As the project still is in a very early phase, this paper focuses on the modelling of the transport of pollutants and the evaluation of the effect on the sediment deposition pattern from the implementation of real time control in the sewer system.


2000 ◽  
Vol 41 (7) ◽  
pp. 31-37 ◽  
Author(s):  
E. Carraro ◽  
E. Fea ◽  
S. Salva ◽  
G. Gilli

The aim of this study was to assess the impact of a municipal wastewater treatment plant (MWTP) on the occurrence of Cryptosporidium oocysts and Giardia cysts in the receiving water. All MWTP effluent samples were Giardia and Cryptosporidium contaminated, although low mean values were found for both parasites (0.21±0.06 oocysts/L; 1.39±0.51 cysts/L). Otherwise, in the raw sewage a greater concentration was detected (4.5±0.3 oocysts/L; 53.6±6.8 cysts/L). The major occurrence of Giardia over Cryptosporidium, both in the influent and in the effluent of the MWTP, is probably related to the human sewage contribution to the wastewater. Data on protozoa contamination of the receiving water body demonstrated similar concentrations in the samples collected before (0.21±0.07 oocysts/L; 1.31±0.38 cysts/L) and after (0.17±0.09 oocysts/L and 1.01±1.05 cysts/L) the plant effluent discharge. The results of this study suggest that the MWTP has no impact related to Giardia and Cryptosporidium river water contamination, and underline the need for investigation into the effectiveness of these protozoa removal by less technologically advanced MWTPs which are the most widespread and could probably show a lower ability to reduce protozoa.


Author(s):  
R. Babko ◽  
V. Pliashechnyk ◽  
T. Kuzmina ◽  
Y. Danko ◽  
J. Szulżyk-Cieplak ◽  
...  

Abstract The work is devoted to the task of simplifying the assessment of the effect of effluents from treatment facilities on the river hydrobiocenosis. The studies were carried out on the mountain river Uzh (Uzhgorod, Ukraine). Our approach to assessing the impact of waste treatment facilities on the river receiver is based on the estimate of the similarity of species composition and quantitative characteristics of populations of organisms from the aerotank and from the river. It is shown that the quantitative development of populations of species of ciliates from the aeration tank is a good indicator for assessing the degradation of organic matter coming with wastewater. The use of qualitative and quantitative characteristics of the protozoa from the wastewater treatment plant as a criterion for assessing the quality of the environment in the area of wastewater discharge showed their representativeness and effectiveness. The use of a limited number of species makes it possible to conduct an express assessment of the effect of effluents on receiving reservoirs for specialists working with activated sludge in the laboratories of treatment facilities.


2017 ◽  
Vol 33 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Piotr M. Bugajski ◽  
Grzegorz Kaczor ◽  
Krzysztof Chmielowski

AbstractThe paper analyzes the effect of precipitation water that inflowing to sanitary sewage system as accidental water on the changes in the total amount of treated sewage. The effects of accidental water supply on the total amount of sewage inflowing to treatment plant were analyzed based on mean daily amounts from the investigated periods and mean daily amounts from incidental supplies. The study was conducted in the years 2010–2015. Six characteristic research periods were identified (one per each calendar year), when the amount of sewage in the sanitary sewage system was greater than during dry weather. The analysis of changes in the amount of sewage supplied to the sewerage system in the six investigated periods revealed that the accidental water constituted from 26.8% to 48.4% of total sewage inflowing to the wastewater treatment plant (WWTP). In exceptional situations, during intense rains, the share of precipitation water in the sewerage system would increase up to 75%. Then, the rainwater inflowing the sewerage system caused hydraulic overloading of the WWTP by exceeding its maximum design supply.


Sign in / Sign up

Export Citation Format

Share Document