scholarly journals Experimental Analysis of the Arrays of Macro Fiber Composite Patches for Rotational Piezoelectric Energy Harvesting from a Shaft

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4815
Author(s):  
Piotr Micek ◽  
Dariusz Grzybek

Four arrays of three MFC patches, glued onto a rotating shaft, were compared in laboratory research. The first array was based on a delta circuit and equipped with one three-phase rectifier; the second array was based on a star circuit and equipped with one three-phase rectifier; the third array was based on parallel connection and equipped with three full-bridge rectifiers; and the fourth array was based on a series connection and equipped with three full-bridge rectifiers. The array based on a delta circuit generated the highest value of maximal electric power in comparison to the rest of arrays. It was experimentally observed that the arrays based on delta or star circuits of MFC patches and equipped with one three-phase rectifier generated a higher value of maximal power than arrays based on the connections of three full-bridge rectifiers, connected in parallel or in series. The array based on parallel connection generated the highest maximal value of current in comparison to rest of arrays for low values of load resistance (from 10 kΩ to 40 kΩ depending on the experiment). For higher values of load resistance arrays based on delta circuits and star circuits generated higher values of current than the array based on parallel connection.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Min Zhang ◽  
YingZheng Liu ◽  
ZhaoMin Cao

A concept of energy harvesting from vortex-induced vibrations of a rigid circular cylinder with two piezoelectric beams attached is investigated. The variations of the power levels with the free stream velocity are determined. A mathematical approach including the coupled cylinder motion and harvested voltage is presented. The effects of the load resistance, piezoelectric materials, and circuit combined on the natural frequency and damping of the vibratory system are determined by performing a linear analysis. The dynamic response of the cylinder and harvested energy are investigated. The results show that the harvested level in SS and SP&PS modes is the same with different values of load resistance. For four different system parameters, the results show that the bigger size of cylinder with PZT beams can obtain the higher harvested power.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7168
Author(s):  
Dariusz Grzybek ◽  
Andrzej Sioma

A cantilever beam, manufactured from a steel-carrying substrate and two patches of Macro Fiber Composite of P2 type, was a subject of laboratory research. MFC patches were glued on both sides of the carrying substrate and were parallelly connected. An experimental determination of an optimal resistance for both energy harvesting and vibration passive damping of the cantilever beam was the purpose of the conducted laboratory research. The research contained 10 experiments in which courses of the energy-harvesting process and resistive passive damping of vibration were estimated. Energy harvesting was estimated by measurements of the generated current for the given load-resistance values. Resistive passive damping of vibration was assessed by using a vision method that enabled the displacements’ measurements of 10 selected points in the beam structure for the given shunt-resistance values. Values of both load resistance and shunt resistance were chosen on the basis of analytically calculated optimal load resistance and optimal shunt resistance. On the basis of the conducted experiments, the resistance range for which both the energy-harvesting process and the vibration-damping process are most effective was determined.


2012 ◽  
Vol 465 ◽  
pp. 86-90
Author(s):  
Can Can Zhang ◽  
Jian Guo Sheng ◽  
Ping Zeng

With the development of science and technology, the smaller sizes generator, the more attention by people. The main purpose of this article is to manufacture three-phase nanogenerator and piezoelectric nanogenerator under vibration, and their working principle are introduced and their performances are studied. The results show that, using the present nanomaterials, three-phase nanogenerator and piezoelectric nanogenerator can be prepared. In ambient vibration condition, piezoelectric materials produce larger rated current and voltage. However, copper laps cutting magnetic line of force produce less rated current and voltage. So the piezoelectric nanogenerator can be separately used to supply power. It may produce higher voltage, current and power if three-phase nanogenerator and piezoelectric nanogenerator in series-parallel connection, and there is commercial value.


2016 ◽  
Vol 28 (9) ◽  
pp. 1188-1210 ◽  
Author(s):  
Panduranga Vittal Avvari ◽  
Yaowen Yang ◽  
Chee Kiong Soh

Piezoelectric energy harvesting has attracted extensive research in the advancement of new designs and techniques over the last decade. The cantilever shaped piezoelectric energy harvesting beam is one of the most employed designs, due to its simplicity and flexibility for further performance enhancement. The strain distribution along the cantilever piezoelectric energy harvesting beam is nonuniform, which would induce fatigue damage at the root of the cantilever on the long run. This particular issue has seldom been addressed in the literature. This article presents an experimental investigation on the fatigue behavior of a cantilever piezoelectric energy harvesting beam at different base excitation levels. The experimental study is augmented with analytical formulation to examine the strain levels and with finite element analysis formulation to model the piezoelectric energy harvesting beam with a macro fiber composite piezoelectric transducer. A two-dimensional model is developed based on the three-dimensional model to investigate crack propagation in the piezoelectric energy harvesting beam. Furthermore, the electromechanical impedance technique is employed to monitor the progression of damage in the experimental specimens. The root mean square deviation and relative root mean square deviation of the impedance values and voltage obtained from the macro fiber composite transducer provide a profound introspection into the damage propagation in the piezoelectric energy harvesting beam. This study provides an insight into the behavior of the piezoelectric energy harvesting beam undergoing fatigue loading due to a uniform sinusoidal base excitation by analyzing the output voltage, resonant frequency, tip displacement, tip velocity, and impedance variations. It will pave the way for future studies on the fatigue-based design guides for piezoelectric energy harvesting beams.


Author(s):  
Roja Esmaeeli ◽  
Haniph Aliniagerdroudbari ◽  
Ashkan Nazari ◽  
Seyed Reza Hashemi ◽  
Muapper Alhadri ◽  
...  

Ambient energy harvesting using piezoelectric transducers is becoming popular to provide power for small microelectronics devices. The deflection of tires during rotation is an example of the source of energy for electric power generation. This generated power can be used to feed tire self-powering sensors for bicycles, cars, trucks, and airplanes. The aim of this study is to optimize the energy efficiency of a rainbow shape piezoelectric transducer mounted on the inner layer of a pneumatic tire for providing enough power for microelectronics devices required to monitor tires. For this aim a rainbow shape piezoelectric transducer is adjusted with the tire dimensions and excited based on the car speed and strain. The geometry and load resistance effects of the piezoelectric transducer is optimized using Multiphysics modeling and finite element analysis.


Author(s):  
Carlos De Marqui Junior ◽  
Marcela de Mello Anice´zio ◽  
Wander G. R. Vieira ◽  
Saulo F. Trista˜o

In this paper a piezoaeroelastically coupled lumped-parameter model for energy harvesting due to flow excitation is presented. A two-dimensional airfoil having two degree of freedom, i.e. pitch and plunge, is investigated. Piezoelectric coupling is considered for the plunge degree of freedom. Therefore an additional electrical degree of freedom is added to the problem. A load resistance is considered in the electrical domain. The unsteady aerodynamic loads are obtained from a time domain lumped vortex model. Two case studies are presented here. First the interaction of piezoelectric energy harvesting and a linear aeroelastic typical section is investigated for a set of electrical load resistances. Time domain responses for pitch and plunge as well as for the electrical outputs (voltage, current and electrical power) are presented. The linear model predictions are compared against experimental results. Later a concentrated nonlinearity (free play) is added to the pitch degree of freedom and the typical section is used to investigate LCO for piezoelectric energy harvesting.


Author(s):  
H. C. Lin ◽  
P. H. Wu ◽  
I. C. Lien ◽  
Y. C. Shu

This article investigates the electrical response of piezoelectric energy harvesters (PEHs) connected in series. Analytic estimates of harvested power output are proposed for a series PEH array system attached to various energy harvesting circuits, including standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) interfaces. In contrast to the case of parallel connection of multiple oscillators, the results are presented through the matrix formulation of charging on capacitance. Besides, they are validated numerically by standard circuit simulations.


Sign in / Sign up

Export Citation Format

Share Document