scholarly journals Real-Time Dynamic Behavior Evaluation of Active Distribution Networks Leveraging Low-Cost PMUs

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4999
Author(s):  
Xuejun Zheng ◽  
Shaorong Wang ◽  
Xin Su ◽  
Mengmeng Xiao ◽  
Zia Ullah ◽  
...  

The investigation of real-time dynamic behavior evaluation in the active distribution networks (ADNs) is a challenging task, and it has great importance due to the emerging trend of distributed generations, electric vehicles, and flexible loads integration. The advent of new elements influences the dynamic behavior of the electric distribution networks and increases the assessment complexity. However, the proper implementation of low-cost phasor measurement units (PMUs) together with the development of power system applications offer tremendous benefits. Therefore, this paper proposes a PMU-based multi-dimensional dynamic index approach for real-time dynamic behavior evaluation of ADNs. The proposed evaluation model follows the assessment principles of accuracy, integrity, practicability, and adaptability. Additionally, we introduced low-cost PMUs in the assessment model and implemented them for real-time and high-precision monitoring of dynamic behaviors in the entire distribution network. Finally, a complete model called the real-time dynamic characteristics evaluation system is presented and applied to the ADN. It is pertinent to mention that our proposed evaluation methodology does not rely on the network topology or line parameters of the distribution network since only the phasor measurements of node voltage and line current are involved in the dynamic index system. Thus, the presented methodology is well adaptive to different operation states of ADN despite frequent topology changes. The validation of the proposed approach was verified by conducting simulations on the modified IEEE 123-node distribution network. The obtained results verify the effectiveness and relevance of the proposed model for the real-time dynamic behavior evaluation of ADNs.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3242
Author(s):  
Hamid Mirshekali ◽  
Rahman Dashti ◽  
Karsten Handrup ◽  
Hamid Reza Shaker

Distribution networks transmit electrical energy from an upstream network to customers. Undesirable circumstances such as faults in the distribution networks can cause hazardous conditions, equipment failure, and power outages. Therefore, to avoid financial loss, to maintain customer satisfaction, and network reliability, it is vital to restore the network as fast as possible. In this paper, a new fault location (FL) algorithm that uses the recorded data of smart meters (SMs) and smart feeder meters (SFMs) to locate the actual point of fault, is introduced. The method does not require high-resolution measurements, which is among the main advantages of the method. An impedance-based technique is utilized to detect all possible FL candidates in the distribution network. After the fault occurrence, the protection relay sends a signal to all SFMs, to collect the recorded active power of all connected lines after the fault. The higher value of active power represents the real faulty section due to the high-fault current. The effectiveness of the proposed method was investigated on an IEEE 11-node test feeder in MATLAB SIMULINK 2020b, under several situations, such as different fault resistances, distances, inception angles, and types. In some cases, the algorithm found two or three candidates for FL. In these cases, the section estimation helped to identify the real fault among all candidates. Section estimation method performs well for all simulated cases. The results showed that the proposed method was accurate and was able to precisely detect the real faulty section. To experimentally evaluate the proposed method’s powerfulness, a laboratory test and its simulation were carried out. The algorithm was precisely able to distinguish the real faulty section among all candidates in the experiment. The results revealed the robustness and effectiveness of the proposed method.


2021 ◽  
Vol 343 ◽  
pp. 03005
Author(s):  
Florina Chiscop ◽  
Bogdan Necula ◽  
Carmen Cristiana Cazacu ◽  
Cristian Eugen Stoica

The topic of this paper represents our research in the process of creating a virtual model (digital twin) for a fast-food company production chain starting with the moment when a customer launches an order, following with the processing of that order, until the customer receives it. The model will describe elements that are included in this process such as equipment, human resources and the necessary space that is needed to host this layout. The virtual model created in a simulation platform will be a replicate of a real fast-food company, thus helping us observe the real time dynamic of this production system. Using WITNESS HORIZON 23 we will construct the model of the layout based on real time data received from the fast-food company. This digital twin will be used to manage the production chain material flow, evaluating the performance of the system architecture in various scenarios. In order to obtain a diagnosis of the system’s performance we will simulate the workflow running through preliminary architecture in compliance with the real time behaviour to identify the bottlenecks and blockages in the flow trajectory. In the end we will propose two different optimised architectures for the fast-food company production chain.


2014 ◽  
Vol 668-669 ◽  
pp. 749-752 ◽  
Author(s):  
Xiao Yi Zhou ◽  
Ling Yun Wang ◽  
Wen Yue Liang ◽  
Li Zhou

Distributed generation (DG) has an important influence on the voltage of active distribution networks. A unidirectional power distribution network will be transformed into a bidirectional, multiple power supply distribution network after DGs access to the distribution network and the direction of power flow is also changed. Considering the traditional forward and backward substitution algorithm can only deal with the equilibrium node and PQ nodes, so the other types of DGs should be transformed into PQ nodes, then its impact on active distribution network can be analyzed via the forward and backward substitution algorithm. In this paper, the characteristics of active distribution networks are analyzed firstly and a novel approach is proposed to convert PI nodes into PQ nodes. Finally, a novel forward and backward substitution algorithm is adopted to calculate the power flow of the active distribution network with DGs. Extensive validation of IEEE 18 and 33 nodes distribution system indicates that this method is feasible. Numerical results show that when DG is accessed to the appropriate location with proper capacity, it has a significant capability to support the voltages level of distribution system.


Sign in / Sign up

Export Citation Format

Share Document