scholarly journals Non-Contact Methods for High-Voltage Insulation Equipment Diagnosis during Operation

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5670
Author(s):  
Dmitry A. Ivanov ◽  
Marat F. Sadykov ◽  
Danil A. Yaroslavsky ◽  
Aleksandr V. Golenishchev-Kutuzov ◽  
Tatyana G. Galieva

The article describes a complex of non-contact methods for remote diagnosis of high-voltage insulators as well as the two-channel method for remote diagnostics of the operating state of high-voltage insulators, based on the registration of partial discharges by electromagnetic and acoustic sensors. The presented device allows visual inspection and searches for faulty high-voltage equipment and a remote non-contact method of recording high-intensity electric fields of industrial frequency and their spatial distribution based on the electro-optical effect. The scheme of using the system for monitoring and diagnosing the technical condition of high-voltage support insulators of open switchgear is described. The results of experimental studies confirm the possibility of industrial applicability of the proposed method for non-contact remote diagnostics of the state of high-voltage insulators under operating voltage.

Author(s):  
A. V. Golenischev-Kutuzov ◽  
D. A. Ivanov ◽  
A. A. Potapov ◽  
V. I. Krotov

In the electric power industry of Russia and abroad, special attention is paid to the problem of an increase in the number of accidents caused by damage to high-voltage insulators in high-voltage equipment. An analysis of emergencies at substations and open switchgears [1- 2, 4] was carried out, which showed that in most cases the causes of damage to high-voltage insulators are natural aging in an applied electric field, overvoltage, and the presence of initial defects in the manufacture of high-voltage insulators. Based on this fact, we developed various methods of non-contact diagnostics of high-voltage insulators in order to identify defects at an early stage of their development. Particular attention was paid to the method of partial discharges because the characteristics of partial discharges provide information on the parameters of defects. The article describes a set of non-contact methods for remote diagnostics of high-voltage insulators; a two-channel method for remote diagnostics of the operating state of high-voltage insulators, based on the registration of partial discharges by electromagnetic and acoustic sensors; a device that allows visual inspection and the search for faulty high-voltage equipment; remote non-contact method for recording electric fields of high tension of industrial frequency, as well as their spatial orientation based on the electro-optical effect. We developed a mock-up of a portable diagnostic device for implementing research methods for high-voltage dielectric elements to diagnose their technical condition using the described complex of non-contact methods. The measuring device as part of a portable diagnostic device consists of a set of sensors for collecting diagnostic information detected by electromagnetic, acoustic and electro-optical sensors and a voltage phase signal applied to the studied highvoltage insulator. The simultaneous use of several sensors at once made it possible to increase the accuracy of localization of partial discharges in high-voltage insulators. Visualization of diagnostic results is possible at the control room in the form of amplitude-phase, frequencyphase and amplitude-frequency diagrams of the distribution of characteristics of partial discharges and on a portable device in the form of radiation intensity from the selected sensor. A portable diagnostic device made it possible in laboratory conditions to study electrophysical processes in various dielectric materials and products under the influence of strong alternating electric fields. A study was made of the features of defects on the rod and the terminal-terminal contact, a diagram of the electrophysical processes accompanying the emission of partial discharges was constructed, and the causes of their occurrence were established.


Author(s):  
Ivan Solovey

A study on the effect of high-frequency electric field on cereal seeds to increase seed germination and plant growth is presented. The study was conducted in the treatment of winter wheat seeds. High-voltage electric fields are one of the promising means of influencing crop seeds. One of the areas of use of high frequency high voltage electric fields is pre-sowing seed treatment, storage and processing. Experimental studies were conducted in the laboratory on a specially designed installation using a high-frequency high-voltage source. Processing doses have been established which make it practical to use a high-frequency, high-voltage electric field in electrotechnical winter wheat seed systems. Positive influence of high-frequency electric field on increase of sowing qualities and yielding properties of seeds is established. The optimal mode for determining the winter wheat field is the micro field, the mode is 16.8 kJ per 1 kg energy, the hour is 4 seconds, and the laboratory laboratory is 20% similar.


2020 ◽  
Vol 36 ◽  
pp. 23-27
Author(s):  
B.K. Sivyakov ◽  
A.A. Skripkin ◽  
D.B. Sivyakov

High-voltage air power lines (AL) are sources of danger to aircraft objects and of pollution of the surrounding environment by their fields. In this connection, there is a problem of creating of analytical mathematical models for the calculation of the magnetic and electric fields of air power lines (AL) in the surrounding them space. The analytical mathematical models for magnetic and electric fields of air power lines (AL) in surrounding space for making subsequent decisions in the field of detection of high-voltage air lines by aircraft and electromagnetic pollution of environment were obtained.


2019 ◽  
Vol 12 (1) ◽  
pp. 18-21
Author(s):  
V. A. Tikhonov

The influence of the periodicity of diagnostic measurements on the operational state of high-voltage transformers is considered. Examples of defects of switching devices of converter transformers and methods for their detection are given. The rationale for the importance of recognition of defects at an early stage of their occurrence is given. The influence of the multiplicity of overvoltages on the service life of converter transformers in the aluminum industry is investigated. Based on the analysis of the service life of converter transformers of one of the powerful aluminum plants, where 83% of converter transformers have exhausted their standard service life, it is shown that in 40% of cases it would be possible to avoid their failures, with timely detection and elimination of emerging defects. Examples of defects of OLR (on-load regulators) of converter transformers and methods for their detection are given. The importance of recognition of defects at an early stage of their occurrence is substantiated. A method for chromatographic analysis of dissolved gases in transformer oil has been developed for the qualitative determination of defects and ways to eliminate them. Examples of diagnostics of converter transformers at operating voltage and working load are given, providing the best quality operational characteristics of converter transformers. The periodicity of diagnostic measurements and the reduction of defects and failures has been substantiated. The question of diagnosing the state of the converter transformer TDNP-40000/10 at an enterprise of the aluminum industry is investigated. Currently, diagnostic methods are being developed based on chromatographic analysis of dissolved gases in transformer oil. The presented method of evaluating the operating parameters of transformers allows for the safe operation of high-voltage transformers and enables to increase the reliability of the power supply scheme of aluminum industry plants.


2020 ◽  
Vol 91 (8) ◽  
pp. 500-504
Author(s):  
L. A. Daryan ◽  
E. P. Grabchak ◽  
R. M. Obraztsov ◽  
P. V. Golubev ◽  
N. L. Agraponova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document