scholarly journals Analysis of Methodology for Scaling Up Building Retrofits: Is There a Role for Virtual Energy Audits?—A First Step in Hawai’i, USA

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5914
Author(s):  
Mark B. Glick ◽  
Eileen Peppard ◽  
Wendy Meguro

Energy audits are a time-consuming and expensive initial step in the building retrofit process. Virtual energy audits purport to be an alternative that remotely identifies energy efficiency measures (EEMs) that may reduce electricity consumption and offset operational costs to businesses operating during and after the COVID-19 pandemic. This case study reviews virtual energy audits as a means to benchmark energy use and estimate cost savings from future EEMs. A novel feature was the estimation of energy costs associated with increasing ventilation to improve indoor air quality. The authors analyzed ten virtual energy audits performed in Honolulu, Hawai’i, over a two-week period that used existing building information and electricity use data to estimate a potential 9% to 41% annual electricity use reduction per building and a 24 MWh to 1195 MWh reduction, respectively. This paper makes a significant contribution through its assessment of virtual energy audits as a step beyond benchmarking, which has merit as an educational tool to motivate business owners to reduce energy use and improve indoor air quality. Further evaluation and improvements are suggested to study how often the virtual energy audits instigate action, how they compare with in-person audits, and their potential for use at a large scale.

Facilities ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ulrika Uotila ◽  
Arto Saari ◽  
Juha-Matti Kalevi Junnonen ◽  
Lari Eskola

Purpose Poor indoor air quality in schools is a worldwide challenge that poses health risks to pupils and teachers. A possible response to this problem is to modify ventilation. Therefore, the purpose of this paper is to pilot a process of generating alternatives for ventilation redesign, in an early project phase, for a school to be refurbished. Here, severe problems in indoor air quality have been found in the school. Design/methodology/approach Ventilation redesign is investigated in a case study of a school, in which four alternative ventilation strategies are generated and evaluated. The analysis is mainly based on the data gathered from project meetings, site visits and the documents provided by ventilation and condition assessment consultants. Findings Four potential strategies to redesign ventilation in the case school are provided for decision-making in refurbishment in the early project phase. Moreover, the research presents several features to be considered when planning the ventilation strategy of an existing school, including the risk of alterations in air pressure through structures; the target number of pupils in classrooms; implementing and operating costs; and the size of the space that ventilation equipment requires. Research limitations/implications As this study focusses on the early project phase, it provides viewpoints to assist decision-making, but the final decision requires still more accurate calculations and simulations. Originality/value This study demonstrates the decision-making process of ventilation redesign of a school with indoor air problems and provides a set of features to be considered. Hence, it may be beneficial for building owners and municipal authorities who are engaged in planning a refurbishment of an existing building.


1978 ◽  
Vol 22 (1) ◽  
pp. 538-538
Author(s):  
James E. Woods

In response to current concerns about the depletion rates of non-renewable energy resources, new codes and standards have been promulgated which require improved construction techniques and reduced ventilation rates. While implementation of these codes and standards has reduced energy consumption rates, degradation of indoor air quality has also been reported. These complaints indicate that arbitrary reduction of ventilation rates can result in deleterious effects to the occupants. Thus, a compromise solution is required with the objective to provide a safe, healthy, and comfortable indoor environment by using materials and methods that optimize efficiency of energy use.


Jurnal IPTEK ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 150-160
Author(s):  
Fuad Rizal

ABSTRACT Quality of natural ventilation in low rise public housing in Jakarta tends to be low. Situation mentioned above presumably caused by several case, among other form and unadequate opening placement, unadequate furniture placement, form and orientation of public housing mass and minimum building protection from sun radiation. Whereas natural ventilation have an importent role in increasing indoor air quality, increasing occupant healthy and help increasing electricity consumption eficiency. The objective of this research is attempt solving natural ventilation problems in low rise public housing architecturally through designs that could used for occupant activity precisely and presenting good natural ventilation simultaneously so it can support occupant activity in public housing as efficiently, comfortable, healthy and secure. Research begins with conduct an observation towards existing public housing in Jakarta through interview, documentation of existing public housing condition and studying public housing designs through working documents and related standards. Collecting climate data especially wind velocity conducted to get illustration of condition that take place in definite period. Those data then analyzed to produce a model formula of public housing building that tested later with computer. The result of research show that the problems of natural ventilation in low rise public housing can be solved by accurately building design that can adapt with surrounding nature. Quite significant positive change occurs after modification does to the existing unit. Hopefully government through certain official can produce public housing design which more optimal, especially in natural ventilation. People also could knowing the caused of natural ventilation problems inside the room also could solving it by simply, efficiently and accurately through the result of this research. Some advantages occupant could gained are good and prevalent airflow inside the room, reducing air conditioning equipment utilization frequency, less maintenance cost and can it can works all the time.  Keywords: natural ventilation, sun radiation, electricity consumption efficiency, indoor air quality, low rise public housing, wind velocity


2016 ◽  
Vol 2016 (1) ◽  
Author(s):  
Michael Johnson* ◽  
Nigel Bruce ◽  
Ajay Pillarisetti ◽  
Heather Adair-Rohani

2019 ◽  
Vol 111 ◽  
pp. 04043
Author(s):  
Louis Cony-Renaud-Salis ◽  
Nouamane Belhaj ◽  
Olivier Ramalho ◽  
Marc Abadie

Home represents an important part of the time spent indoors and is the emblematic place of a family need, e.g. well-being, comfort and safety. In France, health agencies provide information and raise the awareness of the public on health risks and on factors likely to affect the quality of indoor air. However, indoor air quality remains difficult to assess for health investigators. A solution would be to resort to field measurements, but they are expensive and hard to apply to a large-scale population when considering the numerous pollutants found indoors. Therefore, numerical simulation represents a good alternative when accurate and realistic input data are used. We already designed such a model of a dwelling prototype using a type 98 coupling procedure between CONTAM (airflow rates and pollutants concentration determination) and TRNSYS (thermal and moisture calculation). We paid a lot of attention to the details that we thought were important: dwelling multi-zonal representation, envelope airtightness, ventilation system elements (pressure driven inlet and outlet, ducts, fan characteristics), presence of furniture, people activity and location… Nevertheless, the design of this simulation requires a very specific care. This very last point naturally induces a debate: is it necessary to design the simulation to be as accurate and realistic as it actually is, or will a simpler model provide similar results? In this study, we aim to answer that question by evaluating the sensitivity of the ULR-IAQ multipollutant index, defined in a previous study, to different levels of modelling complexity.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 643
Author(s):  
Sukjoon Oh ◽  
Suwon Song

Thermal comfort, indoor air quality (IAQ), and energy use are closely related, even though these have different aspects with respect to building performance. We analyzed thermal comfort and IAQ using real-time multiple environmental data, which include indoor air temperature, relative humidity, carbon dioxide (CO2), and particulate matter (e.g., PM10 and PM2.5), as well as electricity use from an energy recovery ventilation (ERV) system for a childcare center. Thermal comfort frequency and time-series analyses were conducted in detail to thoroughly observe real-time thermal comfort and IAQ conditions with and without ERV operation, and to identify energy savings opportunities during occupied and unoccupied hours. The results show that the highest CO2 and PM10 concentrations were reduced by 51.4% and 29.5%, respectively, during the occupied hours when the ERV system was operating. However, it was also identified that comfort frequencies occurred during unoccupied hours and discomfort frequencies during occupied hours. By analyzing and communicating the three different types of real-time monitoring data, it is concluded that the ERV system should be controlled by considering not only IAQ (e.g., CO2 and PM2.5) but also thermal comfort and energy use to enhance indoor environmental quality and save energy based on real-time multiple monitoring data.


Sign in / Sign up

Export Citation Format

Share Document