scholarly journals Operational Parameters of a Diesel Engine Running on Diesel–Rapeseed Oil–Methanol–Iso-Butanol Blends

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6173
Author(s):  
Jakub Čedík ◽  
Martin Pexa ◽  
Michal Holúbek ◽  
Jaroslav Mrázek ◽  
Hardikk Valera ◽  
...  

This contribution focuses on utilizing blended biofuels of rapeseed oil and methanol with diesel. Rapeseed is one of the most cultivated energy crops in Europe, and its purpose in the blends is to increase the bio-content in test fuels. The purpose of methanol in the blends is to increase bio-content and compensate for the higher viscosity of the rapeseed oil. As methanol is almost insoluble in diesel and rapeseed oil, iso-butanol is used as a co-solvent. The fuel blends were tested in volumetric concentrations of diesel/rapeseed oil/methanol/iso-butanol 60/30/5/5, 50/30/10/10, and 50/10/20/20. Diesel was used as a reference. The measurements were performed on a turbocharged diesel engine Zetor 1204, loaded using the power-takeoff shaft of the Zetor Forterra 8641 tractor. In this paper, the effect of the blended fuels on performance parameters, engine efficiency, production of soot particles, and regulated and unregulated emissions are monitored and analyzed. It was found that engine power decreased by up to 27%, efficiency decreased by up to 5.5% at full engine load, emissions of NOX increased by up to 21.9% at 50% engine load, and production of soot particles decreased; however, the mean size of the particles was smaller.

2015 ◽  
Vol 162 (3) ◽  
pp. 13-18
Author(s):  
Gvidonas Labeckas ◽  
Irena Kanapkienė

The article presents experimental test results of a DI single-cylinder, air-cooled diesel engine FL 511 operating with the normal (class 2) diesel fuel (DF), rapeseed oil (RO) and its 10%, 20% and 30% (v/v) blends with aviation-turbine fuel JP-8 (NATO code F-34). The purpose of the research was to analyse the effects of using various rapeseed oil and jet fuel RO90, RO80 and RO70 blends on brake specific fuel consumption, brake thermal efficiency, emissions and smoke of the exhaust. The test results of engine operation with various rapeseed oil and jet fuel blends compared with the respective parameters obtained when operating with neat rapeseed oil and those a straight diesel develops at full (100%) engine load and maximum brake torque speed of 2000 rpm. The research results showed that jet fuel added to rapeseed oil allows to decrease the value of kinematic viscosity making such blends suitable for the diesel engines. Using of rapeseed oil and jet fuel blends proved themselves as an effective measure to maintain fuel-efficient performance of a DI diesel engine. The brake specific fuel consumption decreased by about 6.1% (313.4 g/kW·h) and brake thermal efficiency increase by nearly 1.0% (0.296) compared with the respective values a fully (100%) loaded engine fuelled with pure RO at the same test conditions. The maximum NOx emission was up to 13.7% higher, but the CO emissions and smoke opacity of the exhaust 50.0% and 3.4% lower, respectively, for the engine powered with biofuel blend RO70 compared with those values produced by the combustion of neat rapeseed oil at full (100%) engine load and speed of 2000 rpm.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Jue Li ◽  
Timothy J. Jacobs ◽  
Tushar Bera ◽  
Michael A. Parkes

This study investigates the effects of engine bore size on diesel engine performance and combustion characteristics, including in-cylinder pressure, ignition delay, burn duration, and fuel conversion efficiency, using experiments between two diesel engines of different bore sizes. This study is part of a larger effort to discover how fuel property effects on combustion, engine efficiency, and emissions may change for differently sized engines. For this specific study, which is centered only on diagnosing the role of engine bore size on engine efficiency for a typical fuel, the engine and combustion characteristics are investigated at various injection timings between two differently sized engines. The two engines are nearly identical, except bore size, stroke length, and consequently displacement. Although most of this diagnosis is done with experimental results, a one-dimensional model is also used to calculate turbulence intensities with respect to geometric factors; these results help to explain observed differences in heat transfer characteristics of the two engines. The results are compared at the same brake mean effective pressure (BMEP) and show that engine bore size has a significant impact on the indicated efficiency. It is found that the larger bore engine has a higher indicated efficiency than the smaller displaced engine. Although the larger engine has higher turbulence intensities, longer burn durations, and higher exhaust temperature, the lower surface area to volume ratio and lower reaction temperature leads to lower heat losses to the cylinder walls. The difference in the heat loss to the cylinder walls between the two engines is found to increase with increasing engine load. In addition, due to the smaller volume-normalized friction loss, the larger sized engine also has higher mechanical efficiency. In the net, since the brake efficiency is a function of indicated efficiency and mechanical efficiency, the larger sized engine has higher brake efficiency with the difference in brake efficiency between the two engines increasing with increasing engine load. In the interest of efficiency, larger bore designs for a given displacement (i.e., shorter strokes or few number of cylinders) could be a means for future efficiency gains.


Author(s):  
Yaodong Wang ◽  
Neil Hewitt ◽  
Philip Eames ◽  
Shengchuo Zeng ◽  
Jincheng Huang ◽  
...  

Experimental tests have been carried out to evaluate the performance and emissions characteristics of a diesel engine when fuelled by blends of 25% vegetable oil with 75% diesel fuel, 50% vegetable oil with 50% diesel fuel, 75% vegetable oil with 25% diesel fuel, and 100% vegetable oil, compared with the performance, emissions characteristics of 100% diesel fuel. The series of tests were conducted and repeated six times using each of the test fuels. 100% of ordinary diesel fuel was also used for comparison purposes. The engine worked at a fixed speed of 1500 r/min, but at different loads respectively, i.e. 0%, 25%, 50%, 75% and 100% of the engine load. The performance and the emission characteristics of exhaust gases of the engine were compared and analyzed. The experimental results showed that the carbon monoxide (CO) emission from the vegetable oil and vegetable oil/diesel fuel blends were nearly all higher than that from pure diesel fuel at the engine 0% load to 75% load. Only at the 100% engine load point, the CO emission of vegetable oil and vegetable oil/diesel fuel blends was lower than that of diesel fuel. The hydrocarbon (HC) emission of vegetable oil and vegetable/diesel fuel blends were lower than that of diesel fuel, except that 50% of vegetable oil and 50% diesel fuel blend was a little higher than that of diesel fuel. The oxides of nitrogen (NOx) emission of vegetable oil and vegetable oil/diesel fuel blends, at the range of tests, were lower than that of diesel fuel.


Energy ◽  
2010 ◽  
Vol 35 (12) ◽  
pp. 5173-5184 ◽  
Author(s):  
Constantine D. Rakopoulos ◽  
Athanasios M. Dimaratos ◽  
Evangelos G. Giakoumis ◽  
Dimitrios C. Rakopoulos

2018 ◽  
Vol 25 (1) ◽  
pp. 108-120 ◽  
Author(s):  
Gvidonas Labeckas ◽  
Stasys Slavinskas ◽  
Jacek Rudnicki ◽  
Ryszard Zadrąg

Abstract The article deals with the effects made by using various n-butanol-diesel fuel blends on the combustion history, engine performance and exhaust emissions of a turbocharged four-stroke, four-cylinder, CRDI 1154HP (85 kW) diesel engine. At first, load characteristics were taken when running an engine with normal diesel fuel (DF) to have ‘baseline’ parameters at the two ranges of speed of 1800 and 2500 rpm. Four a fossil diesel (class 1) and normal butanol (n-butanol) fuel blends possessing 1 wt%, 2 wt%, 3 wt%, and 4 wt% (by mass) of n-butanol-bound oxygen fractions were prepared by pouring 4.65 wt% (BD1), 9.30 wt% (BD2), 13.95 wt% (BD3), and 18.65 wt% (BD4) n-butanol to diesel fuel. Then, load characteristics were taken when an engine with n-butanol-oxygenated fuel blends at the same speeds. Analysis of the changes occurred in the autoignition delay, combustion history, the cycle-to-cycle variation, engine efficiency, smoke, and exhaust emissions NOx, CO, THC obtained with purposely designed fuel blends was performed on comparative bases with the corresponding values measured with ‘baseline’ diesel fuel to reveal the potential developing trends.


2012 ◽  
Vol 4 (4) ◽  
pp. 376-380
Author(s):  
Alfredas Rimkus ◽  
Tomas Ulickas ◽  
Saugirdas Pukalskas ◽  
Jonas Matijošius ◽  
Paulius Stravinskas

The article presents the analysis of possible applications of Brown’s gas to the diesel engine running on oil. The paper also contains a review of experimental works. The selected fuel combinations are as follows: diesel fuel, diesel fuel and Brown’s gas, oil (rapeseed oil) and oil and Brown’s gas. Test results have shown that an additional supply of Brown’s gas to the engine results in a decrease in the amounts of carbon monoxide (CO) and smoke level; however it increases the total emission of nitrous oxides (NOx). The supply of Brown’s gas at low engine load increases comparative effective fuel consumption and reduces high efficiency. Nevertheless, these performance indicators tend to improve at average engine load. Santrauka Straipsnyje nagrinėjamos Brauno dujų panaudojimo galimybės aliejumi veikiančiame dyzeliniame variklyje. Apžvelgti eksperimentiniai darbai. Pasirinkti šie degalų deriniai: dyzelinas, dyzelinas ir Brauno dujos, aliejus (pagamintas iš rapsų) bei aliejus ir Brauno dujos. Bandymo rezultatai rodo, kad varikliui papildomai tiekiant Brauno dujas, mažėja anglies monoksido (CO) kiekiai ir dūmingumas, bet didėja suminė azoto oksidų emisija (NOx). Brauno dujų panaudojimas esant mažoms variklio apkrovoms didina lyginamąsias efektyviąsias degalų sąnaudas ir mažina efektyvųjį naudingumo koeficientą, bet esant vidutinėms apkrovoms šie rodikliai gerėja.


2019 ◽  
Vol 1 (2) ◽  
pp. 28-34
Author(s):  
Vijayakumar C ◽  
Murugesan A ◽  
Subramaniam D ◽  
Panneerselvam N

In this experimental investigation compacts the performance and emissions of compression ignition engines fuelled with MgO nano additive, maducaindica bio diesel blends were examined. Based upon the previous literatures only 20% mahuca methyl ester fuel blends without nano additives is suitable for compression ignition engine without affecting engine efficiency and its characteristics. In this paper magnesium oxide nano additives are added into the 40% Mahucaindica biodiesel- diesel blends at the rate of 50ppm for developing the test fuels. In this nano additives improve the properties of diesel fuel like viscosity, calorific value and decreased the flash point and fire point. Then compared the performance and emissions differences of all blended fuels used as a fuel in a diesel engine. The observation of results, 40MgO + 50ppm blended fuels brake thermal efficiency is improved then CO, HC, CO2and smoke decreased compared to other fuel blends. The results are taken into account, a blend of 40MgO+ Mgo50ppm is the best blend ratio compared than other blends with nano additives.


Sign in / Sign up

Export Citation Format

Share Document