scholarly journals Numerical Investigation for Three-Dimensional Multiscale Fracture Networks Based on a Coupled Hybrid Model

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6354
Author(s):  
Xulin Du ◽  
Linsong Cheng ◽  
Jun Chen ◽  
Jianchao Cai ◽  
Langyu Niu ◽  
...  

The mismatching between the multi-scale feature of complex fracture networks (CFNs) in unconventional reservoirs and their current numerical approaches is a conspicuous problem to be solved. In this paper, the CFNs are divided into hydraulic macro-fractures, induced fractures, and natural micro-fractures according to their mode of origin. A hybrid model coupling various numerical approaches is proposed to match the three-dimensional multi-scale fracture networks. The macro-fractures with high-conductivity and wide-aperture are explicitly characterized by a mimetic Green element method-based hierarchical fracture model. The induced fractures and natural micro-fractures that have features of low-conductivity and small-openings are upscaled to the dual-medium grid and enhanced matrix grid through the equivalent continuum-medium method, respectively. Subsequently, some benchmark cases are implemented to confirm the high-precision and high-robustness of the proposed hybrid model that indeed accomplishes accurate modeling of fluid flow in multi-scale CFNs by comparing with commercial software tNavigator®. Furthermore, an integrated workflow of simulation modeling for multiscale CFNs combined with a field example in Sichuan from China is used to analyzing the production information of fractured horizontal wells in shale gas reservoirs. Compared with the field production data from this typical well, it can be proved that the hybrid model has strong reliability and practicability.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
D. Roubinet ◽  
S. Demirel ◽  
E. B. Voytek ◽  
X. Wang ◽  
J. Irving

Modeling fluid flow in three-dimensional fracture networks is required in a wide variety of applications related to fractured rocks. Numerical approaches developed for this purpose rely on either simplified representations of the physics of the considered problem using mesh-free methods at the fracture scale or complex meshing of the studied systems resulting in considerable computational costs. Here, we derive an alternative approach that does not rely on a full meshing of the fracture network yet maintains an accurate representation of the modeled physical processes. This is done by considering simplified fracture networks in which the fractures are represented as rectangles that are divided into rectangular subfractures such that the fracture intersections are defined on the borders of these subfractures. Two-dimensional analytical solutions for the Darcy-scale flow problem are utilized at the subfracture scale and coupled at the fracture-network scale through discretization nodes located on the subfracture borders. We investigate the impact of parameters related to the location and number of the discretization nodes on the results obtained, and we compare our results with those calculated using reference solutions, which are an analytical solution for simple configurations and a standard finite-element modeling approach for complex configurations. This work represents a first step towards the development of 3D hybrid analytical and numerical approaches where the impact of the surrounding matrix will be eventually considered.


2009 ◽  
Vol 283-286 ◽  
pp. 256-261
Author(s):  
N. Mimouni ◽  
Salahs Chikh

Numerical predictions are carried out in order to investigate the fractured horizontal well behaviour. A control volume based approach is used to solve the transient 3D diffusivity equation adopting an irregular hybrid grid. Effect of several parameters such as reservoir characteristics, fracture properties and physical and geometrical parameters of the reservoir and the well that may affect the well productivity and production are discussed. Simulation results allow to predict the optimum number of induced fractures.


2006 ◽  
Vol 55 (3) ◽  
pp. 247
Author(s):  
Kyung Hun Koh ◽  
Dong Hun Kim ◽  
Young Sook Kim ◽  
Joo Nam Byun

2020 ◽  
Vol 64 (2) ◽  
pp. 20506-1-20506-7
Author(s):  
Min Zhu ◽  
Rongfu Zhang ◽  
Pei Ma ◽  
Xuedian Zhang ◽  
Qi Guo

Abstract Three-dimensional (3D) reconstruction is extensively used in microscopic applications. Reducing excessive error points and achieving accurate matching of weak texture regions have been the classical challenges for 3D microscopic vision. A Multi-ST algorithm was proposed to improve matching accuracy. The process is performed in two main stages: scaled microscopic images and regularized cost aggregation. First, microscopic image pairs with different scales were extracted according to the Gaussian pyramid criterion. Second, a novel cost aggregation approach based on the regularized multi-scale model was implemented into all scales to obtain the final cost. To evaluate the performances of the proposed Multi-ST algorithm and compare different algorithms, seven groups of images from the Middlebury dataset and four groups of experimental images obtained by a binocular microscopic system were analyzed. Disparity maps and reconstruction maps generated by the proposed approach contained more information and fewer outliers or artifacts. Furthermore, 3D reconstruction of the plug gauges using the Multi-ST algorithm showed that the error was less than 0.025 mm.


2018 ◽  
Author(s):  
Donald M. Reeves ◽  
◽  
Hai Pham ◽  
Nicole Sund ◽  
Rishi Parashar

Sign in / Sign up

Export Citation Format

Share Document