scholarly journals Optimal Sizing of PV/Wind/Battery Hybrid Microgrids Considering Lifetime of Battery Banks

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6655
Author(s):  
Ning Zhang ◽  
Nien-Che Yang ◽  
Jian-Hong Liu

Power system scheduling of renewable energy sources has been studied extensively due to the severe increase in pollution caused by conventional energy sources. In this study, a multi-objective scheduling model of a hybrid microgrid is proposed to minimize the cost of hybrid microgrids and maximize the power supply reliability. The main power generation units such as the wind turbines, photovoltaic (PV) cells, and battery banks are used in this hybrid microgrid. In this study, the optimal sizing of PV panels and battery banks are obtained using multi-objective particle swarm optimization (MOPSO) for the proposed multi-objective scheduling model. The lifetime of battery banks is considered in the energy storage system (ESS) model. Finally, the practicality of the scheduling model proposed in this study is verified by four examples.

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3279 ◽  
Author(s):  
Ernest Cortez ◽  
Manuel Moreno-Eguilaz ◽  
Francisco Soriano

This paper presents a new methodology for optimal sizing of the energy storage system ( E S S ), with the aim of being used in the design process of a hybrid electric (HE) refuse collector vehicle ( R C V ). This methodology has, as the main element, to model a multi-objective optimisation problem that considers the specific energy of a basic cell of lithium polymer ( L i – P o ) battery and the cost of manufacture. Furthermore, optimal space solutions are determined from a multi-objective genetic algorithm that considers linear inequalities and limits in the decision variables. Subsequently, it is proposed to employ optimal space solutions for sizing the energy storage system, based on the energy required by the drive cycle of a conventional refuse collector vehicle. In addition, it is proposed to discard elements of optimal space solutions for sizing the energy storage system so as to achieve the highest fuel economy in the hybrid electric refuse collector vehicle design phase.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


2019 ◽  
Vol 137 ◽  
pp. 01007 ◽  
Author(s):  
Sebastian Lepszy

Due to the random nature of the production, the use of renewable energy sources requires the use of technologies that allow adjustment of electricity production to demand. One of the ways that enable this task is the use of energy storage systems. The article focuses on the analysis of the cost-effectiveness of energy storage from the grid. In particular, the technology was evaluated using underground hydrogen storage generated in electrolysers. Economic analyzes use historical data from the Polish energy market. The obtained results illustrate, among other things, the proportions between the main technology modules selected optimally in technical and economic terms.


Author(s):  
Jianhui Wong ◽  
Yun Seng Lim

Electrical grid is no longer featured in a conventional way nowadays. Today, the growing of new technologies, primarily the distributed renewable energy sources and electric vehicles, has been integrated with the distribution networks causing several technical issues. As a result, the penetration of the renewable energy sources can be limited by the utility companies. Smart grid has been emerged as one of the solutions to the technical issues, hence allowing the usage of renewable and improving the energy efficiency of the electrical grid. The challenge is to develop an intelligent management system to maintain the balance between the generation and demand. This task can be performed by using energy storage system. As part of the smart grid, the deployment of energy storage system plays a critical role in stabilizing the voltage and frequency of the networks with renewable energy sources and electric vehicles. This book chapter illustrates the revolution and the roles of energy storage for improving the network performance.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 176 ◽  
Author(s):  
Sarvar Hussain Nengroo ◽  
Muhammad Umair Ali ◽  
Amad Zafar ◽  
Sadam Hussain ◽  
Tahir Murtaza ◽  
...  

The growing human population and the increasing energy needs have produced a serious energy crisis, which has stimulated researchers to look for alternative energy sources. The diffusion of small-scale renewable distributed generations (DG) with micro-grids can be a promising solution to meet the environmental obligations. The uncertainty and sporadic nature of renewable energy sources (RES) is the main obstacle to their use as autonomous energy sources. In order to overcome this, a storage system is required. This paper proposes an optimized strategy for a hybrid photovoltaic (PV) and battery storage system (BSS) connected to a low-voltage grid. In this study, a cost function is formulated to minimize the net cost of electricity purchased from the grid. The charging and discharging of the battery are operated optimally to minimize the defined cost function. Half-hourly electricity consumer load data and solar irradiance data collected from the United Kingdom (UK) for a whole year are utilized in the proposed methodology. Five cases are discussed for a comparative cost analysis of the electricity imported and exported. The proposed scheme provides a techno-economic analysis of the combination of a BSS with a low-voltage grid, benefitting from the feed-in tariff (FIT) scheme.


Sign in / Sign up

Export Citation Format

Share Document