scholarly journals Geochemical Characteristics of Expelled and Residual Oil from Artificial Thermal Maturation of an Early Permian Tasmanite Shale, Australia

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7218
Author(s):  
Xiaomin Xie ◽  
Ye Wang ◽  
Jingwen Lin ◽  
Fenting Wu ◽  
Lei Zhang ◽  
...  

Lipid biomarkers play an important role in defining oil-source rock correlations. A fundamental assumption is that composition (or ratios) of biomarkers in oil is not significantly different from that in bitumen in the source rock. In order to compare the geochemical characteristics of expelled oil and residual oil, a Permian Tasmanite oil shale was used for an artificial maturation experiment to simulate the oil generation period. The results show that the Tasmanite oil shale generated high amounts of hydrocarbons (731 mg HC/g TOC) at low maturation temperatures (340 °C). The hydrocarbon (HC) group compositions are different between the expelled oil (with more aromatic HC and saturated HC) and the residual oil (with more resin fraction and asphaltene). The Pr/Ph ratio (up to 4.01) of the expelled hydrocarbons was much higher than that in residual oil (<1.0). Maturity-related biomarkers Ts/(Ts + Tm), and αααC29-20S/(20S + 20R) and C29-αββ/(ααα + αββ), also showed complicated variations with pyrolysis temperature, especially at post peak oil generation. C27-, C28-, and C29- sterane distributions showed variations with pyrolysis temperature. Therefore, without considering the influence of maturity on the abundance of compounds, either source, maturity and/or organic matter type from the chemical characteristics may not be correct.

2016 ◽  
Vol 53 (10) ◽  
pp. 1053-1072 ◽  
Author(s):  
Mohammed Hail Hakimi ◽  
Abdulghani F. Ahmed

Late Jurassic – Early Cretaceous shales of the Naifa, Safer, and Madbi formations were studied to evaluate source rock characterization. The results of the source rock were then incorporated into basin modeling to understand the timing of hydrocarbon (HC) generation and expulsion. The Late Jurassic – Early Cretaceous shales have low to high organic matter, with total organic carbon (TOC) values in the range of 0.50%–28.01%, indicating fair to excellent source rock potential. Main oil and gas are anticipated to be generated from the Naifa, Safer, and Lam shale samples with types I and (or) II and types II–III kerogens. In contrast, the Meem samples are dominated by type III kerogen (hydrogen index, HI < 200 mg HC / g TOC), and are thus considered to be gas prone. The Late Jurassic – Early Cretaceous shale samples have temperatures of maximum pyrolysis yield (Tmax) in the range of 337–515 °C, consistent with immature to post-mature stages. The Tmax data also indicate that the Safer and Madbi shale samples have sufficient thermal maturity, i.e., peak–mature oil and gas window. The basin models indicate that the Naifa Formation is early–mature, and the onset oil generation began during the Early Miocene. The models also indicate that the main phase of oil generation in the Safer source rock began during the Late Eocene. In contrast, the Madbi source rock units had passed the peak oil generation window, and the oil was converted to gas during the Late Cretaceous to Late Eocene. The modeled HC expulsion history reveals that most oils are contributed by both Madbi units, with significant amounts of gas originating from the Meem unit.


2021 ◽  
Vol 13 (1) ◽  
pp. 1536-1551
Author(s):  
Nader A. A. Edress ◽  
Saudy Darwish ◽  
Amir Ismail

Abstract Geochemical and lithological investigations in the WON C-3X well record five organic-matter-rich intervals (OMRIs) of effective source rocks. These OMRIs correspond to moderate and good potentials. Two of these intervals occurred within the L-Kharita member of the Albian age represent 60.97% of the entire Albian thickness. The rest of OMRIs belongs to the Abu-Roash G and F members of the Late Cenomanian–Santonian age comprising 17.52 and 78.66% of their total thickness, respectively. The calculated heat flow of the studied basin is high within the range of 90.1–95.55 mW/m2 from shallower Abu-Roash F to deeper L-Kharita members. This high-heat flow is efficient for shallowing in the maximum threshold expulsion depth in the studied well to 2,000 m and active source rock depth limit to 2,750 m. Thermal maturity and burial history show that the source rock of L-Kharita entered the oil generation from 97 Ma till the late oil stage of 7.5 Ma, whereas the younger Abu-Roash G and F members have entered oil generation since 56 Ma and not reached peak oil yet. Hence, the source rock intervals from Abu-Roash F and G are promising for adequate oil generation.


2017 ◽  
Vol 82 (12) ◽  
pp. 1461-1477 ◽  
Author(s):  
Gordana Gajica ◽  
Aleksandra Sajnovic ◽  
Ksenija Stojanovic ◽  
Milan Antonijevic ◽  
Nikoleta Aleksic ◽  
...  

The influence of pyrolysis type on the shale oil generation and its composition was studied. Different methods such as Rock-Eval pyrolysis, thermogravimetric analysis (TGA) and pyrolysis in the open and closed systems were applied. Samples from the Upper layer of Aleksinac oil shale (Serbia) were used as a substrate and first time characterized in detail. The impact of kerogen content and type on the shale oil generation in different pyrolysis systems was also estimated. Majority of the analysed samples have total organic carbon content > 5 wt. % and contain oil prone kerogen types I and/or II. Therefore, they can be of particular interest for the pyrolytic processing. The thermal behaviour of analysed samples obtained by TGA is in agreement with Rock-Eval parameters. The pyrolysis of oil shale in the open system gives higher yield of shale oil than the pyrolysis in the closed system. The yield of hydrocarbons (HCs) in shale oil produced by the open pyrolysis system corresponds to an excellent source rock potential, while HCs yield from the closed system indicates a very good source rock potential. The kerogen content has a greater impact on the shale oil generation than kerogen type in the open pyrolysis system, while kerogen type plays a more important role on the generation of shale oil than the kerogen content in the closed system. The composition of the obtained shale oil showed certain undesirable features, due to the relatively high contents of olefinic HCs (open system) and polar compounds (closed system), which may require further treatment to be used.


2021 ◽  
Vol 18 (2) ◽  
pp. 398-415
Author(s):  
He Bi ◽  
Peng Li ◽  
Yun Jiang ◽  
Jing-Jing Fan ◽  
Xiao-Yue Chen

AbstractThis study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.


2013 ◽  
Vol 27 (2) ◽  
pp. 666-672 ◽  
Author(s):  
Jillian L. Goldfarb ◽  
Anthony D’Amico ◽  
Christopher Culin ◽  
Eric M. Suuberg ◽  
Indrek Külaots

Author(s):  
Majid Safaei-Farouji ◽  
Mohammad Reza Kamali ◽  
Hossain Rahimpour-Bonab ◽  
Thomas Gentzis ◽  
Bo Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document