scholarly journals Mining-induced stress distribution of the working face in a kilometer-deep coal mine—a case study in Tangshan coal mine

2018 ◽  
Vol 15 (5) ◽  
pp. 2060-2070 ◽  
Author(s):  
Jianlin Xie ◽  
JiaLin Xu ◽  
Feng Wang
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuesong Tang ◽  
Wenchao Sun ◽  
Xin Zhang ◽  
Pengju Liu

Deep mining has become the normal state of coal mining; compared with the mine with shallow buried depth, the consequent high level of in situ stress and complex distribution have brought severe threats to the stability of the stope and the surrounding rock of the roadway. In this research, taking the 121304 working face of Kouzidong Mine as the engineering background, the characteristics of mining-induced stress distribution under complex in situ stress environment in deep mining are analyzed by using on-site measurement of the original rock stress and mining stress, establishing a theoretical model centered on the middle section of the working face, and establishing large-scale numerical calculation models for different advancing directions. It was found that under deep mining conditions, the maximum stress of the original rock is 25.12 MPa, and the direction is vertical. The advanced influence range of mining stress is about 150 m, and the abutment pressure presents a three-peak distribution characteristic in front of the working face. The research results provide important theoretical guiding value for guiding the mining of coal mines with similar geological conditions.


2013 ◽  
Vol 353-356 ◽  
pp. 1422-1426
Author(s):  
Chang Qing Ma ◽  
Bao Qing Dai ◽  
Guang Peng Qin

Based on the engineering background of Tangkou in Shandong province, this thesis carries out mining-induced stress distribution law comparative study and analysis of 2313 working face which is lying below-1100 miles, using methods of theoretical analysis, numerical simulation and field measurement, and obtains the limited synergistic effect of mining-induced stress variation and working face advancing steps under the condition of kilometer-deep shaft. That is, with the increase of working face advancing steps, there will be a corresponding increase in the advanced abutment pressure peak, sphere of influence, and the distance from the peak position to the coal wall, within its limit value. The conclusion of this study have some guidance for the safe production and support design of working face in kilometer-deep shaft.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7287
Author(s):  
Xinxin Zhou ◽  
Zhenhua Ouyang ◽  
Ranran Zhou ◽  
Zhenxing Ji ◽  
Haiyang Yi ◽  
...  

In order to prevent the multi-dynamic disasters induced by rock burst and roof water inrush in strong rock burst coal seams under multi-aquifers, such as is the case with the 207 working face in the Tingnan coal mine considered in this study, the exhibited characteristics of two types of dynamic disasters, namely rock burst and water inrush, were analyzed. Based on the lithology and predicted caving height of the roof, the contradiction between rock burst and water inrush was analyzed. In light of these analyses, an integrated method, roof pre-splitting at a high position and shattering at a low position, was proposed. According to the results of numerical modelling, pre-crack blasting at higher rock layers enables a cantilever roof cave in time, thereby reducing the risk of rock burst, and pre-crack blasting at underlying rock layers helps increase the crushing degree of the rock, which is beneficial for decreasing the caving height of rock layers above goaf, thereby preventing the occurrence of water inrush. Finally, the proposed method was applied in an engineering case, and the effectiveness of this method for prevention and control of multi-dynamics disasters was evaluated by field observations of the caving height of rock layers and micro-seismic monitoring. As a result, the proposed method works well integrally to prevent and control rock burst and water inrush.


2013 ◽  
Vol 353-356 ◽  
pp. 1082-1089
Author(s):  
Qing Feng Chen ◽  
Zhong Hui Chen ◽  
Ning Ma ◽  
Wei Zhang ◽  
Hui Li

The mining coal in the front of long wall face consists of elastic zone, plastic zone and fracture zone. Based on the research of zonaldisintegration of surrounding rock mass in deep tunnel, the zonal disintegration phenomenon of deep coal mine was analyzed by using the theoretical analysis method. On the basis of the Griffith theory, the internal and external boundary formulas of fracture zone and the mechanical criteria of zonal disintegration were obtained. The research shows that the essence of zonal disintegration is the tensile failure and brittle tension crack failure under the abutment pressure, the main influence factors of the width variation of fracture zone are original rock stress and un-axial tensile strength of coal.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Gang Wang ◽  
Yishan Pan ◽  
Xiaochun Xiao ◽  
Di Wu ◽  
Hongrui Zhao ◽  
...  

This paper presents a new method to identify the stress concentration degree and stress distribution characteristics in front of working face in coal mine, based on the close relationship between charge and stress during fracture of coal mass. This method overcomes many disadvantages of conventional stress-monitored methods. First, the stress and charge relationship of coal mass was established through damage theory and statistical strength theory. Then, the relationship between stress and charge was studied by a laboratory test, and finally, the field charge monitoring test was performed. The results show that there is a nonlinear relationship between loading stress (σ) and cumulative charge (Q), which can be represented by polynomials. The fitting results of the laboratory test between σ and Q conform to a cubic polynomial function, Q=aσ3+bσ2+cσ+d. It verifies the rationality of the theoretical relationship formula. The field monitoring results show that average charge is great and cumulative charge changes from rapid upward to sharp upward before roof falling. The magnitude and position of average charge and the upward trend of cumulative charge can be used to identify the stress concentration and stress distribution in front of working face, and the abnormal stress area can be predicted. The results can provide certain guidance for the forecast of rock burst in coal mine.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ming Ji ◽  
Zhong-guang Sun ◽  
Wei Sun

Based on the dynamic expressions of permeability and porosity of the coal seam derived in the paper, a multiphysical field coupling numerical model of gas migration under the interaction of stress field and seepage field was established. The gas drainage project #3 Coal Seam operated by Sima Coal Industry Co., Ltd., was selected as the study object. Taking different drainage time periods in various positions of drainage holes into consideration, combined with the advance situation of the 1207 working face in the Sima Coal Mine, a mixed layout gas drainage scheme featured with the effective borehole spacing was obtained through the COMSOL multiphysics simulation. In addition, a series of field industrial tests were performed to validate the research result, revealing that comprehensively considering the extraction time of coal and optimizing the layout of extraction boreholes can effectively improve the engineering economic benefits.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yanjun He ◽  
Jianhua Li

In this study, the 31113 fully mechanised working face in the Lijiahao Coal Mine was selected as the project background. The failure characteristics and optimum spacing of a double-withdrawal-channel surrounding rock were extensively investigated through field measurements, theoretical analysis, and numerical simulations. The following results were obtained. The loading influence range of the working face was fixed. Under the influence of mining, the stress distribution variation in the double-withdrawal channels with spacing and the influence of stress distribution on the surrounding rock stability of the withdrawal channels were determined. The optimum distance between the double-withdrawal channels to achieve the stability of the surrounding rock was at least 25 m, and engineering measures are required to limit the mining height in the final mining stage. The rationality of the main and auxiliary withdrawal channel spacing of 25 m and measures to limit the mining height in the final stage were demonstrated. The findings of this study provide a valuable reference for constructing the layout of withdrawal channels in the adjacent working faces of the same mining area.


Sign in / Sign up

Export Citation Format

Share Document