scholarly journals Energy Efficiency and Smooth Running of a Train on the Route While Approaching Another Train

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7593
Author(s):  
Janusz Szkopiński ◽  
Andrzej Kochan

This paper presents an innovative technique of traffic management on a route divided into fixed block distances for trains equipped with a continuous area data transmission system that ensures information exchange between a train and a control center. The originality of the technique is focused on the optimization of the following train’s speed profile in terms of energy consumption under the need to maintain a minimum distance to the preceding train and to assume the smooth running of the following train, using elements of fixed and mobile block distance methods. The obtained results are an answer to the question of whether it is possible to obtain a smoother movement of the train and savings in mechanical energy consumption if the speed profile of this train is adjusted to the conditions before the train, such as information about the speed of the preceding train.

Author(s):  
Qingying Lai ◽  
Jun Liu ◽  
Ali Haghani ◽  
Lingyun Meng ◽  
Yihui Wang

As a new type of transportation serving the suburban passengers, the medium-speed maglev (MSM) is gradually becoming the focus of scholars. This paper addressess the speed profile optimization problem for MSM train operations by integrating the power supply system and train control system under various constraints. Unlike the model for optimizing the mechanical energy of the train, this approach aims at the lowest energy consumption of the substation for the MSM system. First, a speed profile optimization model for the MSM train is built by combining the mathematical control model of the long stator synchronous linear motor and dynamic equation of train, in which the stator current is the control variable. Next, a dedicated dynamic programming approach is proposed to solve the optimization model. The results of the numerical experiments show that the proposed model outperforms the model that only considers the train mechanical energy, and the energy consumption is reduced by 10.3% and 6.5% in the two case studies, respectively. Furthermore, the relationship between energy consumption and travel time is analyzed to reflect the optimal results of the proposed model limited to different fixed travel time.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3658
Author(s):  
Qingfeng Zhu ◽  
Sai Ji ◽  
Jian Shen ◽  
Yongjun Ren

With the advanced development of the intelligent transportation system, vehicular ad hoc networks have been observed as an excellent technology for the development of intelligent traffic management in smart cities. Recently, researchers and industries have paid great attention to the smart road-tolling system. However, it is still a challenging task to ensure geographical location privacy of vehicles and prevent improper behavior of drivers at the same time. In this paper, a reliable road-tolling system with trustworthiness evaluation is proposed, which guarantees that vehicle location privacy is secure and prevents malicious vehicles from tolling violations at the same time. Vehicle route privacy information is encrypted and uploaded to nearby roadside units, which then forward it to the traffic control center for tolling. The traffic control center can compare data collected by roadside units and video surveillance cameras to analyze whether malicious vehicles have behaved incorrectly. Moreover, a trustworthiness evaluation is applied to comprehensively evaluate the multiple attributes of the vehicle to prevent improper behavior. Finally, security analysis and experimental simulation results show that the proposed scheme has better robustness compared with existing approaches.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2660 ◽  
Author(s):  
Agostinho Rocha ◽  
Armando Araújo ◽  
Adriano Carvalho ◽  
João Sepulveda

Efficient use of energy is currently a very important issue. As conventional energy resources are limited, improving energy efficiency is, nowadays, present in any government policy. Railway systems consume a huge amount of energy, during normal operation, some routes working near maximum energy capacity. Therefore, maximizing energy efficiency in railway systems has, recently, received attention from railway operators, leading to research for new solutions that are able to reduce energy consumption without timetable constraints. In line with these goals, this paper proposes a Simulated Annealing optimization algorithm that minimizes train traction energy, constrained to existing timetable. For computational effort minimization, re-annealing is not used, the maximum number of iterations is one hundred, and generation of cruising and braking velocities is carefully made. A Matlab implementation of the Simulated Annealing optimization algorithm determines the best solution for the optimal speed profile between stations. It uses a dynamic model of the train for energy consumption calculations. Searching for optimal speed profile, as well as scheduling constraints, also uses line shape and velocity limits. As results are obtained in seconds, this new algorithm can be used as a real-time driver advisory system for energy saving and railway capacity increase. For now, a standalone version, with line data previously loaded, was developed. Comparison between algorithm results and real data, acquired in a railway line, proves its success. An implementation of the developed work as a connected driver advisory system, enabling scheduling and speed constraint updates in real time, is currently under development.


2019 ◽  
Vol 8 (4) ◽  
pp. 3782-3785

The overhead of a particular node in the network depends on its position with respect to packet forwarding capability and total number of nodes in direct contact. In cognitive radio network, the primary user detection and spectrum sharing mechanism consist of two phases which constitutes the sensing mechanism as first phase and second phase of spectrum allocation along with finalization of end to end route of communication. The base idea of route establishment is derived from AODV protocol while proposing the traffic aware route establishment mechanism. The established route by using simple AODV has lots of limitations such as common router selection in multiple routes due to its direct being in range scenario.The proposed method shows significant improvement in energy efficiency due to reduction in overall overhead based on dual valued information exchange based route establishment mechanism. The results obtained thorough simulations show better improvement in the energy efficiency.


2013 ◽  
Vol 25 (4) ◽  
pp. 395-403
Author(s):  
Pančo Ristov

The quality of Vessel Traffic Management and Information Systems depends on the quality of all subsystems, in particular the quality of control centers. The most commonly used quantitative indicators of the control centers' quality are: reliability, availability, safety, and system failure. Therefore, a block diagram of reliability and the model for reliability / availability (Markov model) have been created in this paper and a detailed analysis and calculation of the quantitative indicators of critical components (servers) of the control center have been performed. The quality functioning of the control centers will enable gathering, processing, storing and dissemination of timely, safe, and reliable data and information to the services in charge of monitoring and management of maritime traffic.


2020 ◽  
Vol 10 (6) ◽  
pp. 6488-6493
Author(s):  
T. T. T. A. Anh ◽  
N. V. Quyen

The significant energy consumption for railway electric transportation operation poses a great challenge in outlining saving energy solutions. Speed profile optimization based on optimal control theory is one of the most common methods to improve energy efficiency without the railway infrastructure investment costs. The paper proposes an optimization method based on Pontryagin's Maximum Principle (PMP), not only to find optimal switching points in three operation phases: accelerating, coasting, braking, and from these switching points being able to determine the optimal speed profile, but also to ensure fixed-trip time. In order to determine trip time abiding by the scheduled timetables by applying nonlinear programming puts the Lagrange multiplier λ in the objective function regarded as a time constraint condition. The correctness and energy effectiveness of this method have been verified by the simulation results with data collected from the electrified trains of the Cat Linh-Ha Dong metro line in Vietnam. The saving energy levels are compared in three scenarios: electrified train operation tracking the original speed profile (energy consumption of the route: 144.64kWh), train operation tracking the optimal speed profile without fixed-trip time (energy consumption of the route: 129.18kWh), and train operation tracking the optimal speed profile and fixed trip time (energy consumption of the route: 132.99kWh) in an effort to give some useful choices for operating metro lines.


Author(s):  
Xiaoyu Guo ◽  
Yongxin Peng ◽  
Sruthi Ashraf ◽  
Mark W. Burris

Connected vehicle (CV) technology can connect, communicate, and share information between vehicles, infrastructure, and other traffic management systems. Recent research has examined and promoted CV and connected automated vehicle (CAV) technology on managed lane systems to increase capacity and reduce congestion, as managed lane systems could be equipped with advanced infrastructure relatively quickly. However, the effect on travel considering, information-based managed lane choice decisions in a CV environment is not clear. Therefore, this research analyzed the potential effects on a managed lane system with connected vehicles considering several travel behavior elements, including drivers’ willingness to reroute and their choice of managed lanes based on individual travel time savings. This study analyzed the potential effects on a managed lane system by assigning different market penetration rates (0%, 10%, 50%, 100%) of CVs and informing CV drivers about travel time savings for a 10-mi stretch at 5-min intervals. How the traffic performance measurements (i.e., throughput, travel time saving, average speed and average travel time) vary under different market penetration rates of CVs is then investigated. Two major conclusions are reached: (i) although information exchange was assumed to be instantaneous between vehicles and the system, there existed a response time (or time delay) in the macroscopic traffic reflection; (ii) managed lane use may decrease, when travel time information becomes available, since drivers perceive they are saving more travel time than they actually do save.


2019 ◽  
Vol 33 (07) ◽  
pp. 1950073
Author(s):  
Lei Huang ◽  
De-Yong Guan ◽  
Xin-Hong Qiang

Traffic flow dynamics and energy consumption differs under dissimilar weather conditions, while seldom investigations have been conducted with a cellular automata model. In this paper, the friction coefficient between ground and tire is considered as the quantitative label of weather, a dynamic safe gap based on friction coefficient to avoid rear-end crash is introduced. We developed a safer one-dimensional model to examine the kinetic energy consumption under different weathers. Numerical results show that previous models overestimated the kinetic energy consumption in medium density flow (density [Formula: see text]0.5). In medium flow, speed limit will not reduce energy consumption on rainy and snowy days in most cases, but is necessary for prevention of accidents. Inversely, the effect of speed control on energy consumption is obvious under extreme weather. Our work can promote a better understanding of traffic dynamics, reduce energy dissipation and be applied to real traffic management.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Fei Gao ◽  
Yannan Liu ◽  
Wei-Hsin Liao

In this paper, a powered ankle-foot prosthesis with nonlinear parallel spring mechanism is developed. The parallel spring mechanism is used for reducing the energy consumption and power requirement of the motor, at the same time simplifying control of the prosthesis. To achieve that goal, the parallel spring mechanism is implemented as a compact cam-spring mechanism that is designed to imitate human ankle dorsiflexion stiffness. The parallel spring mechanism can store the negative mechanical energy in controlled dorsiflexion (CD) phase and release it to assist the motor in propelling a human body forward in a push-off phase (PP). Consequently, the energy consumption and power requirements of the motor are both decreased. To obtain this desired behavior, a new design method is proposed for generating the cam profile. Unlike the existing design methods, the friction force is considered here. The cam profile is decomposed into several segments, and each segment is fitted by a quadratic Bezier curve. Experimental results show that the cam-spring mechanism can mimic the desired torque characteristics in the CD phase (a loading process) more precisely. Finally, the developed prosthesis is tested on a unilateral below-knee amputee. Results indicate that, with the assistance of the parallel spring mechanism, the motor is powered off and control is not needed in the CD phase. In addition, the peak power and energy consumption of the motor are decreased by approximately 37.5% and 34.6%, respectively.


2020 ◽  
Vol 27 (7) ◽  
pp. 1000-1006
Author(s):  
Mollie R Cummins ◽  
Guilherme Del Fiol ◽  
Barbara I Crouch ◽  
Pallavi Ranade-Kharkar ◽  
Aly Khalifa ◽  
...  

Abstract Objective The objective of this project was to enable poison control center (PCC) participation in standards-based health information exchange (HIE). Previously, PCC participation was not possible due to software noncompliance with HIE standards, lack of informatics infrastructure, and the need to integrate HIE processes into workflow. Materials and Methods We adapted the Health Level Seven Consolidated Clinical Document Architecture (C-CDA) consultation note for the PCC use case. We used rapid prototyping to determine requirements for an HIE dashboard for use by PCCs and developed software called SNOWHITE that enables poison center HIE in tandem with a poisoning information system. Results We successfully implemented the process and software at the PCC and began sending outbound C-CDAs from the Utah PCC on February 15, 2017; we began receiving inbound C-CDAs on October 30, 2018. Discussion With the creation of SNOWHITE and initiation of an HIE process for sending outgoing C-CDA consultation notes from the Utah Poison Control Center, we accomplished the first participation of PCCs in standards-based HIE in the US. We faced several challenges that are also likely to be present at PCCs in other states, including the lack of a robust set of patient identifiers to support automated patient identity matching, challenges in emergency department computerized workflow integration, and the need to build HIE software for PCCs. Conclusion As a multi-disciplinary, multi-organizational team, we successfully developed both a process and the informatics tools necessary to enable PCC participation in standards-based HIE and implemented the process at the Utah PCC.


Sign in / Sign up

Export Citation Format

Share Document