scholarly journals Modified Analytical Approach for PV-DGs Integration into a Radial Distribution Network Considering Loss Sensitivity and Voltage Stability

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7775
Author(s):  
Oludamilare Bode Adewuyi ◽  
Ayooluwa Peter Adeagbo ◽  
Isaiah Gbadegesin Adebayo ◽  
Harun Or Rashid Howlader ◽  
Yanxia Sun

Achieving the goals of distribution systems operation often involves taking vital decisions with adequate consideration for several but often contradictory technical and economic criteria. Hence, this paper presents a modified analytical approach for optimal location and sizing of solar PV-based DG units into radial distribution network (RDN) considering strategic combination of important power system planning criteria. The considered criteria are total planning cost, active power loss and voltage stability, under credible distribution network operation constraints. The optimal DG placement approach is derived from the modification of the analytical approach for DG placement using line-loss sensitivity factor and the multiobjective constriction factor-based particle swarm optimization is adopted for optimal sizing. The effectiveness of the proposed procedure is tested on the IEEE 33-bus system modeled using Matlab considering three scenarios. The results are compared with existing reports presented in the literature and the results obtained from the proposed approach shows credible improvement in the RDN steady-state operation performance for line-loss reduction, voltage profile improvement and voltage stability improvement.

2019 ◽  
Vol 13 (1) ◽  
pp. 17-23
Author(s):  
Helbert Eduardo Espitia Cuchango ◽  
Iván Machón González ◽  
Hilario López García ◽  
Domingo Guzmán Díaz González

Energy distribution systems present alterations in the voltage profile in their nodes when distributed generation elements are installed. As a consequence, tension can be risen in a level beyond the admissible. This paper presents the optimization to three fuzzy controllers located in a distribution network with radial topology. The optimization of each controller is performed using the maximum descent algorithm, which is separately carried out; thus, having a distributed approach. The interaction between generators is considered to perform this process; the results show that the adjustment of the controllers is achieved


Author(s):  
Arvind Raj ◽  
Nur Fadilah Ab Aziz ◽  
Zuhaila Mat Yasin ◽  
Nur Ashida Salim

Voltage instability in power distribution systems can result in voltage collapse throughout the grid. Today, with the advanced of power generation technology from renewable sources, concerns of utility companies are much being focused on the stability of the grid when there is an integration of distributed generation (DG) in the system.  This paper presents a study on DG units placement and sizing in a radial distribution network by using a pre-developed index called Voltage Stability Condition Index (VSCI). In this paper, VSCI is used to determine DG placement candidates, while the value of power losses is used to identify the best DG placement. The proposed method is tested on a standard 33-bus radial distribution network and compared with existing Ettehadi and Aman methods. The effectiveness of the method is presented in terms of reduction in power system losses, maximization of system loadability and voltage quality improvement. Results show that VSCI can be utilized as the voltage stability indicator for DG placement in radial distribution power system. The integration of DG is found to improve voltage stability by increasing the system loadability and reducing the power losses of the network.


Author(s):  
Mohammed Hamouda Ali ◽  
Mohammed Mehanna ◽  
Elsaied Othman

The impact of the renewable distributed generations (RDGs), such as photovoltaic (PV) and wind turbine (WT) systems can be positive or negative on the system, based on the location and size of the DG. So, the correct location and size of DG in the distribution network remain an obstacle to achieving their full possible benefits. Therefore, the future distribution networks with the high penetration of DG power must be planned and operated to improve their efficiency. Thus, this paper presents a new methodology for integrated of renewable energy-based DG units with electrical distribution network. Since the main objective of the proposed methodology is to reduce the power losses and improve the voltage profile of the radial distribution system (RDS). In this regard, the optimization problem was formulated using loss sensitivity factor (LSF), simulated annealing (SA), particle swarm optimization (PSO) and a combination of loss sensitivity index (LSI) with SA & PSO (LSISA, LSIPSO) respectively. This paper contributes a new methodology SAPSO, which prevents the defects of SA & PSO. Optimal placement and sizing of renewable energy-based DG tested on 33-bus system. The results demonstrate the reliability and robustness of the proposed SAPSO algorithm to find the near-optimal position and size of the DG units to mitigate the power losses and improve the radial distribution system's voltage profile.


Author(s):  
Su Mon Myint ◽  
Soe Win Naing

Nowadays, the electricity demand is increasing day by day and hence it is very important not only to extract electrical energy from all possible new power resources but also to reduce power losses to an acceptable minimum level in the existing distribution networks where a large amount of power dissipation occurred. In Myanmar, a lot of power is remarkably dissipated in distribution system.  Among methods in reducing power losses, network reconfiguration method is employed for loss minimization and exhaustive technique is also applied to achieve the minimal loss switching scheme. Network reconfiguration in distribution systems is performed by opening sectionalizing switches and closing tie switches of the network for loss reduction and voltage profile improvement. The distribution network for existing and reconfiguration conditions are modelled and simulated by Electrical Transient Analyzer Program (ETAP) 7.5 version software. The inputs are given based on the real time data collected from 33/11kV substations under Yangon Electricity Supply Board (YESB). The proposed method is tested on 110-Bus, overhead AC radial distribution network of Dagon Seikkan Township since it is long-length, overloaded lines and high level of power dissipation is occurred in this system. According to simulation results of load flow analysis, voltage profile enhancement and power loss reduction for proposed system are revealed in this paper.


Author(s):  
O.E. Olabode

Compensating reactive power deficiency on power grids is a central concern in the distribution of energy management systems. Several approaches have been adopted over time to minimize the total real power loss and enhancing bus voltage profile. Shunt capacitor has been used from time immemorial for addressing issue of reactive power compensation at the distribution end of power systems, and the extent of benefits derivable from its usage depend solely on correct siting and sizing. To this effect, meta-heuristic algorithms are promising optimization tools for achieving these objectives. This paper, therefore, presents a comprehensive review of cuckoo search algorithm based on optimal siting and sizing of shunt capacitors in radial distribution systems. The suitability, in addition to strengths and weakness of each approaches reported in the reviewed articles have been painstakingly x-rayed. Based on the review, it was observed that a two-stage approach is always adopted in the compensation process: the pre-selection of potential or sensitive nodes and the optimal sizing of shunt capacitors needed for the compensation. For the pre-location, Voltage Stability Index and Loss Sensitivity Factor were found to be comparatively less complex and highly suitable techniques. Another cogent discovery from this review is that less attention has been drawn to the use of cuckoo search algorithm by Nigerian researchers. Therefore, regarding Nigerian electric grid system, the use of cuckoo search algorithm in reactive power support presents a research gap for further investigations.


Author(s):  
Hazim Sadeq Mohsin Al-Wazni ◽  
Shatha Suhbat Abdulla Al-Kubragyi

This paper presents a hybrid algorithm by applying a hybrid firefly and particle swarm optimization algorithm (HFPSO) to determine the optimal sizing of distributed generation (DG) and distribution static compensator (D-STATCOM) device. A multi-objective function is employed to enhance the voltage stability, voltage profile, and minimize the total power loss of the radial distribution system (RDS). Firstly, the voltage stability index (VSI) is applied to locate the optimal location of DG and D-STATCOM respectively. Secondly, to overcome the sup-optimal operation of existing algorithms, the HFPSO algorithm is utilized to determine the optimal size of both DG and D-STATCOM. Verification of the proposed algorithm has achieved on the standard IEEE 33-bus and Iraqi 65-bus radial distribution systems through simulation using MATLAB. Comprehensive simulation results of four different cases show that the proposed HFPSO demonstrates significant improvements over other existing algorithms in supporting voltage stability and loss reduction in distribution networks. Furthermore, comparisons have achieved to demonstrate the superiority of HFPSO algorithms over other techniques due to its ability to determine the global optimum solution by easy way and speed converge feature.


Sign in / Sign up

Export Citation Format

Share Document