scholarly journals First-Principles Study of Pt-Based Bifunctional Oxygen Evolution & Reduction Electrocatalyst: Interplay of Strain and Ligand Effects

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7814
Author(s):  
Seung-hoon Kim ◽  
Yoonmook Kang ◽  
Hyung Chul Ham

We examined the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) of Pt-based Pt3M/Pt nanoalloy catalysts (where M represents a 3d transition metal) for bifunctional electrocatalysts using spin-polarized density functional theory calculations. First, the stability of the Pt3M/Pt catalyst was investigated by calculating the bulk formation energy and surface separation energy. Using the calculated adsorption energies for the OER/ORR intermediates in the modeled catalysts, we predicted the OER/ORR overpotentials and potential limiting steps for each catalyst. The origins of the enhanced catalytic reactivity in Pt3M/Pt catalysts caused by strain and ligand effects are explained separately. In addition, compared to Pt(111), the OER and ORR activities in a Pt3Ni/Ptskin catalyst with a Pt skin layer were increased by 13.7% and 18.4%, respectively, due to the strain and ligand effects. It was confirmed that compressive strain and ligand effects are key factors in improving the catalytic performance of OER/ORR bifunctional catalysts.

2019 ◽  
Author(s):  
Seoin Back ◽  
Kevin Tran ◽  
Zachary Ulissi

<div> <div> <div> <div><p>Developing active and stable oxygen evolution catalysts is a key to enabling various future energy technologies and the state-of-the-art catalyst is Ir-containing oxide materials. Understanding oxygen chemistry on oxide materials is significantly more complicated than studying transition metal catalysts for two reasons: the most stable surface coverage under reaction conditions is extremely important but difficult to understand without many detailed calculations, and there are many possible active sites and configurations on O* or OH* covered surfaces. We have developed an automated and high-throughput approach to solve this problem and predict OER overpotentials for arbitrary oxide surfaces. We demonstrate this for a number of previously-unstudied IrO2 and IrO3 polymorphs and their facets. We discovered that low index surfaces of IrO2 other than rutile (110) are more active than the most stable rutile (110), and we identified promising active sites of IrO2 and IrO3 that outperform rutile (110) by 0.2 V in theoretical overpotential. Based on findings from DFT calculations, we pro- vide catalyst design strategies to improve catalytic activity of Ir based catalysts and demonstrate a machine learning model capable of predicting surface coverages and site activity. This work highlights the importance of investigating unexplored chemical space to design promising catalysts.<br></p></div></div></div></div><div><div><div> </div> </div> </div>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yang Xia ◽  
Xunhua Zhao ◽  
Chuan Xia ◽  
Zhen-Yu Wu ◽  
Peng Zhu ◽  
...  

AbstractOxygen reduction reaction towards hydrogen peroxide (H2O2) provides a green alternative route for H2O2 production, but it lacks efficient catalysts to achieve high selectivity and activity simultaneously under industrial-relevant production rates. Here we report a boron-doped carbon (B-C) catalyst which can overcome this activity-selectivity dilemma. Compared to the state-of-the-art oxidized carbon catalyst, B-C catalyst presents enhanced activity (saving more than 210 mV overpotential) under industrial-relevant currents (up to 300 mA cm−2) while maintaining high H2O2 selectivity (85–90%). Density-functional theory calculations reveal that the boron dopant site is responsible for high H2O2 activity and selectivity due to low thermodynamic and kinetic barriers. Employed in our porous solid electrolyte reactor, the B-C catalyst demonstrates a direct and continuous generation of pure H2O2 solutions with high selectivity (up to 95%) and high H2O2 partial currents (up to ~400 mA cm−2), illustrating the catalyst’s great potential for practical applications in the future.


2019 ◽  
Vol 21 (46) ◽  
pp. 25743-25748
Author(s):  
Yong-Chao Rao ◽  
Xiang-Mei Duan

The catalytic performance of Pd/Pt embedded planar carbon nitride for CO oxidation has been investigated via spin-polarized density functional theory calculations.


Author(s):  
Zhen Feng ◽  
Zelin Yang ◽  
Xiaowen Meng ◽  
Fachuang Li ◽  
Zhanyong Guo ◽  
...  

The development of single-atom catalysts (SACs) for electrocatalytic nitrogen reduction reaction (NRR) remains a great challenge. Using density functional theory calculations, we design a new family of two-dimensional metal-organic frameworks...


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yin Jia ◽  
Xuya Xiong ◽  
Danni Wang ◽  
Xinxuan Duan ◽  
Kai Sun ◽  
...  

AbstractImmobilizing metal atoms by multiple nitrogen atoms has triggered exceptional catalytic activity toward many critical electrochemical reactions due to their merits of highly unsaturated coordination and strong metal-substrate interaction. Herein, atomically dispersed Fe-NC material with precise sulfur modification to Fe periphery (termed as Fe-NSC) was synthesized, X-ray absorption near edge structure analysis confirmed the central Fe atom being stabilized in a specific configuration of Fe(N3)(N–C–S). By enabling precisely localized S doping, the electronic structure of Fe-N4 moiety could be mediated, leading to the beneficial adjustment of absorption/desorption properties of reactant/intermediate on Fe center. Density functional theory simulation suggested that more negative charge density would be localized over Fe-N4 moiety after S doping, allowing weakened binding capability to *OH intermediates and faster charge transfer from Fe center to O species. Electrochemical measurements revealed that the Fe-NSC sample exhibited significantly enhanced oxygen reduction reaction performance compared to the S-free Fe-NC material (termed as Fe-NC), showing an excellent onset potential of 1.09 V and half-wave potential of 0.92 V in 0.1 M KOH. Our work may enlighten relevant studies regarding to accessing improvement on the catalytic performance of atomically dispersed M-NC materials by managing precisely tuned local environments of M-Nx moiety.


Computation ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 52
Author(s):  
Jerwin Jay E. Taping ◽  
Junie B. Billones ◽  
Voltaire G. Organo

Nickel(II) complexes of mono-functionalized pyridine-tetraazamacrocycles (PyMACs) are a new class of catalysts that possess promising activity similar to biological peroxidases. Experimental studies with ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), substrate) and H2O2 (oxidant) proposed that hydrogen-bonding and proton-transfer reactions facilitated by their pendant arm were responsible for their catalytic activity. In this work, density functional theory calculations were performed to unravel the influence of pendant arm functionalization on the catalytic performance of Ni(II)–PyMACs. Generated frontier orbitals suggested that Ni(II)–PyMACs activate H2O2 by satisfying two requirements: (1) the deprotonation of H2O2 to form the highly nucleophilic HOO−, and (2) the generation of low-spin, singlet state Ni(II)–PyMACs to allow the binding of HOO−. COSMO solvation-based energies revealed that the O–O Ni(II)–hydroperoxo bond, regardless of pendant arm type, ruptures favorably via heterolysis to produce high-spin (S = 1) [(L)Ni3+–O·]2+ and HO−. Aqueous solvation was found crucial in the stabilization of charged species, thereby favoring the heterolytic process over homolytic. The redox reaction of [(L)Ni3+–O·]2+ with ABTS obeyed a 1:2 stoichiometric ratio, followed by proton transfer to produce the final intermediate. The regeneration of Ni(II)–PyMACs at the final step involved the liberation of HO−, which was highly favorable when protons were readily available or when the pKa of the pendant arm was low.


2020 ◽  
Vol 6 (25) ◽  
pp. eaaz2060 ◽  
Author(s):  
Shanshan Dang ◽  
Bin Qin ◽  
Yong Yang ◽  
Hui Wang ◽  
Jun Cai ◽  
...  

Renewable energy-driven methanol synthesis from CO2 and green hydrogen is a viable and key process in both the “methanol economy” and “liquid sunshine” visions. Recently, In2O3-based catalysts have shown great promise in overcoming the disadvantages of traditional Cu-based catalysts. Here, we report a successful case of theory-guided rational design of a much higher performance In2O3 nanocatalyst. Density functional theory calculations of CO2 hydrogenation pathways over stable facets of cubic and hexagonal In2O3 predict the hexagonal In2O3(104) surface to have far superior catalytic performance. This promotes the synthesis and evaluation of In2O3 in pure phases with different morphologies. Confirming our theoretical prediction, a novel hexagonal In2O3 nanomaterial with high proportion of the exposed {104} surface exhibits the highest activity and methanol selectivity with high catalytic stability. The synergy between theory and experiment proves highly effective in the rational design and experimental realization of oxide catalysts for industry-relevant reactions.


2020 ◽  
Author(s):  
Wu Tong ◽  
Bolong Huang ◽  
Pengtang Wang ◽  
Qi Shao ◽  
Xiaoqing Huang

Abstract Understanding the correlation between exposed surfaces and performances of controlled nanocatalysts can aid effective strategies to enhance electrocatalysis, but this is as yet unexplored for the nitrogen reduction reaction (NRR). Here, we first report controlled synthesis of well-defined Pt3Fe nanocrystals with tunable morphologies (nanocube, nanorod and nanowire) as ideal model electrocatalysts for investigating the NRR on different exposed facets. The detailed electrocatalytic studies reveal that the Pt3Fe nanocrystals exhibit shape-dependent NRR electrocatalysis. The optimized Pt3Fe nanowires bounded with high-index facets exhibit excellent selectivity (no N2H4 is detected), high activity with NH3 yield of 18.3 μg h−1 mg−1cat (0.52 μg h−1 cm−2ECSA; ECSA: electrochemical active surface area) and Faraday efficiency of 7.3% at −0.05 V versus reversible hydrogen electrode, outperforming the {200} facet-enclosed Pt3Fe nanocubes and {111} facet-enclosed Pt3Fe nanorods. They also show good stability with negligible activity change after five cycles. Density functional theory calculations reveal that, with high-indexed facet engineering, the Fe-3d band is an efficient d-d coupling correlation center for boosting the Pt 5d-electronic exchange and transfer activities towards the NRR.


2016 ◽  
Vol 69 (6) ◽  
pp. 689 ◽  
Author(s):  
Xixian Yang ◽  
Yuhang Li ◽  
Hao Yu ◽  
Xuchun Gui ◽  
Hongjuan Wang ◽  
...  

Fe-, Ni-, and alloyed FeNi-filled carbon nanotubes (Fe@CNT, Ni@CNT, and FeNi@CNT) were prepared by a general strategy using a mixture of xylene and dichlorobenzene as carbon source, and ferrocene, nickelocene, and their mixture as catalysts. By tailoring the composition of the carbon precursor, the filling ratio and the wall thickness of metal@CNT could be controlled. For the catalytic oxidation of cyclohexane in liquid phase with molecular oxygen as oxidant, the highest activity was obtained over Fe@CNT synthesized from pure dichlorobenzene. However, Ni filling did not improve the activity of CNTs. The effects of metal filling, wall thickness, and defects on catalytic activity were investigated to determine the structure–activity relationship of the filled CNTs. The enhanced catalytic performance can be attributed to a combined contribution of thin walls of CNTs and confined electron-donating metals, which are favourable to electron transfer on the surfaces of CNTs. The modification of the electronic structure of CNTs upon Fe and Ni fillers insertion was elucidated through density functional theory calculations.


2015 ◽  
Vol 51 (60) ◽  
pp. 12052-12055 ◽  
Author(s):  
Jing-Fang Huang ◽  
Wen-Yu Chen

Combination of the “nano-size” effect and Cl− complexation ability causes massive electrodissolution of Pt under acidic conditions to promote the regeneration of Pt–organic composites and to significantly improve the catalytic performance of the O2 reduction reaction.


Sign in / Sign up

Export Citation Format

Share Document