scholarly journals An Electrochemical Platform for the Carbon Dioxide Capture and Conversion to Syngas

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7869
Author(s):  
Alessio Mezza ◽  
Angelo Pettigiani ◽  
Nicolò B. D. Monti ◽  
Sergio Bocchini ◽  
M. Amin Farkhondehfal ◽  
...  

We report on a simple electrochemical system able to capture gaseous carbon dioxide from a gas mixture and convert it into syngas. The capture/release module is implemented via regeneration of NaOH and acidification of NaHCO3 inside a four-chamber electrochemical flow cell employing Pt foils as catalysts, while the conversion is carried out by a coupled reactor that performs electrochemical reduction of carbon dioxide using ZnO as a catalyst and KHCO3 as an electrolyte. The capture module is optimized such that, powered by a current density of 100 mA/cm2, from a mixture of the CO2–N2 gas stream, a pure and stable CO2 outlet flow of 4–5 mL/min is obtained. The conversion module is able to convert the carbon dioxide into a mixture of gaseous CO and H2 (syngas) with a selectivity for the carbon monoxide of 56%. This represents the first all-electrochemical system for carbon dioxide capture and conversion.

2018 ◽  
Vol 6 (15) ◽  
pp. 6455-6462 ◽  
Author(s):  
Mahmoud M. Abdelnaby ◽  
Ahmed M. Alloush ◽  
Naef A. A. Qasem ◽  
Bassem A. Al-Maythalony ◽  
Rached B. Mansour ◽  
...  

A new cross-linked porous polymer was synthesized and its performance in the capture of carbon dioxide from a ternary gas mixture was demonstrated, and properties retained for over 45 cycles. This report represents one of the top performing porous organic materials for carbon capture.


2014 ◽  
Vol 1644 ◽  
Author(s):  
Renate Kellermann ◽  
Dan Taroata ◽  
Martin Schiemann ◽  
Helmut Eckert ◽  
Peter Fischer ◽  
...  

ABSTRACTIn this work, electrochemically recyclable lithium is analyzed as high energy density, large scale storage material for stranded renewable energy in a closed loop. The strongly exothermic reaction of lithium with carbon dioxide (CO2) yields thermal energy directly comparable to the combustion of coal or methane in an oxygen containing atmosphere. The thermal level of the reaction is sufficient for re-electrification in a thermal power plant compatible process.The reaction of single lithium particles, avoiding particle-particle interactions, is compared to the combustion of atomized lithium spray in a CO2 containing atmosphere. Particle temperatures of up to 4000K were found for the reaction of single lithium particles in a CO2, nitrogen (N2), oxygen (O2) and steam gas mixture. Furthermore the combustion of atomized lithium spray in both dry CO2 atmosphere and CO2/steam gas mixture was analyzed. The identified solid reaction products are lithium carbonate, lithium oxide and lithium hydroxide. The formation of carbon monoxide (CO) as gaseous reaction product is demonstrated. Carbon monoxide is a valuable by-product, which could be converted to methanol or gasoline using hydrogen.


Sign in / Sign up

Export Citation Format

Share Document