scholarly journals Will Aggregator Reduce Renewable Power Surpluses? A System Dynamics Approach for the Latvia Case Study

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7900
Author(s):  
Ieva Pakere ◽  
Armands Gravelsins ◽  
Girts Bohvalovs ◽  
Liga Rozentale ◽  
Dagnija Blumberga

Power demand-side management has been identified as one of the possible elements towards a more flexible power system in case of increased capacities of variable renewable energy sources—solar and wind energy. The market coordinators or aggregators are introduced to adjust the electricity consumption by following the market situation. However, the role of aggregators is mainly analysed from the economic perspective, and the demand side management is performed to maximise the utilisation of low price power during off-peak hours. However, this research focuses on analysing the introduction of aggregators as a future player to increase the total share of renewable power and decrease the surplus solar and wind electricity occurrence. An in-depth system dynamics model has been developed to analyse the hourly power production and power consumption rates at the national level for the Latvia case study. The results show that introducing aggregators and load shifting based on standard peak shaving can increase the share of surplus power and does not benefit from increased utilisation of solar and wind power. On the contrary, demand-side management based on available RES power can decrease the surplus power by 5%.

2020 ◽  
Vol 10 (3) ◽  
pp. 5857-5863 ◽  
Author(s):  
T. V. Krishna ◽  
M. K. Maharana ◽  
C. K. Panigrahi

Growing population and expanding industry set off the demand for electrical energy and issues, such as the problem of peak load demand, emerge. To balance the supply and load demand problem, the energy management system has the vital role of Electric Peak shaving with the integration of microgrid into the utility grid. The combination of demand-side management with storable energy sources helps us resolve the matters concerned with the peak load demand. However, in a microgrid, whenever the distributed energy sources are interconnected, the DC bus link voltage will vary due to the inherent behavior of each source as they mainly depend on geographical conditions. This work proposes voltage droop control strategy to keep the DC bus link voltage at a constant value. Also, it gives an overlook of the present power sector scenario of India and a reassessment of the demand side management system and how it is utilized in electrical peak shaving.


2021 ◽  
Vol 238 ◽  
pp. 02008
Author(s):  
Paolo Cherubini ◽  
Guido Francesco Frate ◽  
Marco Antonino Maggiore ◽  
Andrea Micangeli ◽  
Lorenzo Ferrari

Small Mediterranean islands are typically served by mini-grids based on inefficient, polluting and costly diesel generators that provide electricity and freshwater through desalination plants. The study focuses on the case study of the Italian island of Ustica, for which the actual consumption and generation load profiles for 2018 have been used to simulate different scenarios through HOMER Pro software. The scenarios tested the possible integration of renewable energy sources (photovoltaic, small wind turbines) and electrochemical storage in the system, based on a techno-economic, financial, and environmental analysis. In addition to generation-side interventions, demand-side management strategies have been evaluated by considering the desalter as a deferrable load and by introducing energy efficiency measures. Finally, a sensitivity analysis on the most influential parameters (diesel price, discount rate) has been conducted on the base case scenario. The proposed technical solutions are compatible with the environmental and regulatory constraints of the island and lead to reduced emissions and long-term savings. The savings would enable a reduction in the cross-subsidy that the mainland electricity users pay to cover the higher costs incurred for diesel generation in non-interconnected small islands.


Author(s):  
Marco Astolfi ◽  
Giulio Guandalini ◽  
Marco Belloli ◽  
Adriano Hirn ◽  
Paolo Silva ◽  
...  

Abstract A key approach to large renewable power management is based on implementing storage technologies, including batteries, power-to-gas and compressed air energy storage (CAES). This work presents the preliminary design and performance assessment of an innovative type of CAES, based on underwater storage volumes (UW-CAES) and intended for installation in the proximity of deep water seas or lakes. The UW-CAES works with constant hydrostatic pressure storage and variable volumes. The proposed system is adiabatic, not using any fuel to increase the air temperature before expansion; a sufficient TIT is instead obtained through a thermal energy storage system which recovers the compression heat. The system includes (i) a set of turbomachines (modular multi-stage compressor, with partial intercooling; expansion turbine); (ii) a thermal energy storage (TES) system with different temperature levels designed to recover a large fraction of the compression heat, allowing the subsequent heating of air prior to the expansion phase; (iii) an underwater modular compressed air storage, conceived as a network of rigid but open tanks lying on the seabed and allowing a variable-volume and constant pressure operation. The compressor operates at variable loads, following an oscillating renewable power input, according to strategies oriented to improve the overall system dispatchability; the expander can be designed to work either at full load, thanks to the stability of the air flow rate and of the TIT guaranteed by the thermal storage, or at variable load. The paper first discusses in detail the sizing and off-design characterization of the overall system; it is then simulated a case study where the UW-CAES is coupled to a wind farm for peak shaving and dispatchability enhancement, evaluating the impact of a realistic power input on performances and plant flexibility. Although the assessment shall be considered preliminary, it is shown that round trip efficiency in the range of 75%–80% can be obtained depending on the compressor section configuration; making the UW-CAES a promising technology compared to electrochemical and pumped-hydro storage systems. The technology is also applied to perform peak-shaving of the electricity production from a wind park; annual simulations considering part load operation result in global round trip efficiency around 75% with a 10 to 15% reduction in the average unplanned energy injection in the electric grid. The investigated case study provides an example of the potential of this system in providing power output peak shaving when coupled with an intermittent and non-predictable energy source.


Sign in / Sign up

Export Citation Format

Share Document