scholarly journals The Efficiency Comparison of Hydro Turbines for Micro Power Plant from Free Vortex

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7961
Author(s):  
Piyawat Sritram ◽  
Ratchaphon Suntivarakorn

In this research paper, the relationship between a crossflow turbine and propeller turbine size changes and the pond size in a free vortex power generation system was investigated. This relationship can be written in the form of a new mathematical equation using the principles of the response surface methodology (RSM) method. This study aimed to compare the efficiency of a crossflow turbine and propeller turbine to enhance a micro power plant from free vortex. The pond size in a micro power plant from free vortex was 1 m in diameter and 0.5 m in height with a 0.2 m outlet drain at the bottom. All turbines were tested at different water flowrates of 0.2, 0.3, 0.4, 0.5, and 0.6 m3/s to identify the rpm, water head, voltage, and electric current to access the waterpower, power output, and overall efficiency. At a 0.02 m3/s water flowrate, the crossflow turbine had greater overall efficiency than the propeller turbine, reaching 9.09% efficiency. From the comparison of the results of the two turbines used in the 0.5 m high cylinder-shaped generator pond, the turbine type, turbine size (height and diameter), number of blades, and water flowrate are key factors that affect the overall efficiency. The crossflow turbine can achieve greater efficiency than the propeller turbine in this generator system.

Electrician ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 54-57
Author(s):  
Rahmat Bayu Setiawan ◽  
Panji Adhi Pradana ◽  
Muhammad Abdul Fattah ◽  
Khairudin Khairudin

Intisari — Energi terbarukan adalah sumber energi yang dihasilkan secara alamiah dan akan terus berkelanjutan jika dikelola dengan baik. Indonesia adalah negara yang terkenal dengan potensi alam yang sangat melimpah. Banyak sumber daya alam yang perlu perhatian dari pemerintah untuk dikembangkan. Pengaplikasian alat yang dapat dikembangkan yaitu di antaranya yaitu melalui termoelektrik yang dipantau melalui IoT secara portable sehingga dapat menjangkau daerah 3T (Tertinggal, Terdepan dan Terluar). Prototipe penghasil energi terbarukan dan ramah lingkungan dalam sistem pembangkit mikro, yang dalam hal ini portable generator termoelektrik termonitoring IoT sebagai pembangkit termal dapat dikembangkan untuk mengatasi pemerataan dan ketersediaan energi listrik di daerah 3T (terdepan, terluar dan tertinggal) berbasis kearifan lokal dapat didesain menggunakan 3-D INVENTOR dan hasil simulasi dari sisi material menggunakan ANSYS serta hasil simulasi dari output yang dihasilkan menggunakan MATLAB. Pembuatan prototipe sesuai dengan konsep dan desain yang telah didapatkan sebelumnya dengan menggunakan softwareMicroroft Visio, software INVENTOR dan evaluasi hasil simulasi dengan menggunakan software MATLAB. Hasil dari pembuatan prototipe akan dilakukan pengujian tingkat gradien suhu terbaik untuk menghasilkan energi optimal, sehingga didapatkan data optimal dalam menyimulasikan micro power plant tersebut. Berdasarkan simulasi yang dilakukan didapatkan data dengan daya minimum sebesar 6,215 W selama 2 menit dan daya maksimum sebesar 19,932 W selama 8 menit Kata kunci — Energi, IoT, Portable Generator ThermoelectricAbstract — Renewable energy is a source of energy that is generated naturally and will be sustainable if managed properly. Indonesia is a country known for its abundant natural potential. There are many natural resources that need attention from the government to be developed. The development of this power generator tool really requires an understanding of the design of the tools used to get optimal results. The application of tools that can be developed is through thermoelectricity which is monitored via IoT in a portable manner so that it can reach 3T areas (Disadvantaged, Frontier and Outermost). Prototypes for producing renewable and environmentally friendly energy in micro-generating systems, in which IoT-monitored portable thermoelectric generators as thermal generators can be developed to address the distribution and data of electrical energy in 3T (frontier, outermost and disadvantaged) areas based on local wisdom can be designed using 3 -D INVENTOR and simulation of materials using ANSYS and simulation of the output generated from MATLAB. Making prototypes in accordance with the concepts and designs that have been obtained previously using Microroft Visio software, INVENTOR software and evaluation of simulation results using MATLAB software. The results of the prototyping will be tested for the best temperature gradient level to produce optimal energy, so that optimal data can be obtained in simulating the micro power plant. Testing data that has been done, and used as evaluation material in the simulation that is carried out. Based on the simulation, data obtained with a minimum power of 6,215 W for 2 minutes and a maximum power of 19,932 W for 8 minutes.Keywords— Energy, IoT, Portable generator thermoelectric


2019 ◽  
Vol 12 (2) ◽  
Author(s):  
Ahmad Mukhtar ◽  
Omar Qazi M. ◽  
Umar Shafiq ◽  
M. Ahsan Badr Khan

Global survival and human comfort in now a day strongly depend upon energy and environment. In this research generalized thermodynamic model equations were subjected to 4MW rice husk fired thermal power plant in Pakistan for theoretical investigations on work lost and entropy generation to check the plant thermal performance and irreversibility’s and concluded that the entropy generation and work lost is highest in Furnace/Boiler that is 3487.12352 KWK-1 and 1039.685 ×103 respectively. The work lost in Furnace/Boiler is about 32.4641% while the overall efficiency of the power plant is 59.8917%.


2018 ◽  
Vol 46 ◽  
pp. 00021 ◽  
Author(s):  
Tomasz Kaczmarczyk ◽  
Grzegorz Żywica ◽  
Eugeniusz Inhatowicz

The purpose of the work was to experimentally evaluate the operation of the domestic ORC micro power plant that uses a commercial biomass boiler fueled with wood pellets. The boiler, with a maximum thermal power output of 45kWt, uses a heating jacket and thermal oil as a working medium. The prototypical domestic ORC micro power plant was equipped with a multistage radial-flow microturbine that can generate electricity (2.5kWe at a rotational speed of 24,000 rpm). The microturbine is a key component of the turbogenerator, which was manufactured in oilfree technology. The turbogenerator’s high-speed bearings are lubricated with the low-boiling medium’s vapour. The HFE7100 fluid was used as a working medium in the ORC installation. The paper discusses the thermodynamic conditions to be met for effective operation of the boiler and the results of experimental research. The operating characteristics of the ORC installation and the biomass boiler were presented. Problems that occurred while testing the micro-cogeneration power plant with the boiler and their impact on the electric and thermal efficiency of the cycle were discussed.


2013 ◽  
Vol 17 (2) ◽  
pp. 497-508 ◽  
Author(s):  
Thamir Ibrahim ◽  
M.M. Rahman

The thermodynamic analyses of the triple-pressure reheat combined cycle gas turbines with duct burner are presented and discussed in this paper. The overall performance of a combined cycle gas turbine power plant is influenced by the ambient temperature, compression ratio and turbine inlet temperature. These parameters affect the overall thermal efficiency, power output and the heat-rate. In this study a thermodynamic model was development on an existing actual combined cycle gas turbine (CCGT) (In this case study, an effort has been made to enhance the performance of the CCGT through a parametric study using a thermodynamic analysis. The effect of ambient temperature and operation parameter, including compression ratio and turbine inlet temperature, on the overall performance of CCGT are investigated. The code of the performance model for CCGT power plant was developed utilizing the THERMOFLEX software. The simulating results show that the total power output and overall efficiency of a CCGT decrease with increase the ambient temperature because increase the consumption power in the air compressor of a GT. The totals power of a CCGT decreases with increase the compression rate, while the overall efficiency of a CCGT increases with increase the compression ratio to 21, after that the overall efficiency will go down. Far there more the turbine inlet temperature increases the both total power and overall efficiency increase, so the turbine inlet temperature has a strong effect on the overall performance of CCGT power plant. Also the simulation model give a good result compared with MARAFIQ CCGT power plant. With these variables, the turbine inlet temperature causes the greatest overall performance variation.


2013 ◽  
Vol 479-480 ◽  
pp. 575-579 ◽  
Author(s):  
Wen Bei Zhan ◽  
Guo Qiang Xu ◽  
Yong Kai Quan ◽  
Xiang Luo ◽  
Ting Ting Li

In this paper, a 20kW design capacity solar parabolic dish concentrator hybrid solar/gas dish Stirling system (HS/GDSS) is proposed. To ensure a steady operation of an electricity power plant, HS/GDSS uses gas as complement when solar radiation is weak. Thermodynamic models were made to conduct design of system parameters. After detail characteristics were chosen, analysis was carried out to evaluate this system. The results show that within design condition, overall efficiency of the system is 27.58% at daytime and 33.94% at night, which has advantages over single-energy solar dish Stirling electricity power plant.


Automatica ◽  
1980 ◽  
Vol 16 (3) ◽  
pp. 265-279
Author(s):  
H.G. Kwatny ◽  
K.C. Kalnitsky

Sign in / Sign up

Export Citation Format

Share Document