scholarly journals The Impacts of Battery Electric Vehicles on the Power Grid: A Monte Carlo Method Approach

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8102
Author(s):  
Teresa Nogueira ◽  
José Magano ◽  
Ezequiel Sousa ◽  
Gustavo R. Alves

Balancing energy demand and supply will become an even greater challenge considering the ongoing transition from traditional fuel to electric vehicles (EV). The management of this task will heavily depend on the pace of the adoption of light-duty EVs. Electric vehicles have seen their market share increase worldwide; the same is happening in Portugal, partly because the government has kept incentives for consumers to purchase EVs, despite the COVID-19 pandemic. The consequent shift to EVs entails various challenges for the distribution network, including coping with the expected growing demand for power. This article addresses this concern by presenting a case study of an area comprising 20 municipalities in Northern Portugal, for which battery electric vehicles (BEV) sales and their impact on distribution networks are estimated within the 2030 horizon. The power required from the grid is estimated under three BEV sales growth deterministic scenarios based on a daily consumption rate resulting from the combination of long- and short-distance routes. A Monte Carlo computational simulation is run to account for uncertainty under severe EV sales growth. The analysis is carried out considering three popular BEV models in Portugal, namely the Nissan Leaf, Tesla Model 3, and Renault Zoe. Their impacts on the available power of the distribution network are calculated for peak and off-peak hours. The results suggest that the current power grid capacity will not cope with demand increases as early as 2026. The modeling approach could be replicated in other regions with adjusted parameters.

2005 ◽  
Vol 5 (2) ◽  
pp. 31-38
Author(s):  
A. Asakura ◽  
A. Koizumi ◽  
O. Odanagi ◽  
H. Watanabe ◽  
T. Inakazu

In Japan most of the water distribution networks were constructed during the 1960s to 1970s. Since these pipelines were used for a long period, pipeline rehabilitation is necessary to maintain water supply. Although investment for pipeline rehabilitation has to be planned in terms of cost-effectiveness, no standard method has been established because pipelines were replaced on emergency and ad hoc basis in the past. In this paper, a method to determine the maintenance of the water supply on an optimal basis with a fixed budget for a water distribution network is proposed. Firstly, a method to quantify the benefits of pipeline rehabilitation is examined. Secondly, two models using Integer Programming and Monte Carlo simulation to maximize the benefits of pipeline rehabilitation with limited budget were considered, and they are applied to a model case and a case study. Based on these studies, it is concluded that the Monte Carlo simulation model to calculate the appropriate investment for the pipeline rehabilitation planning is both convenient and practical.


Author(s):  
Xin Shen ◽  
Hongchun Shu ◽  
Min Cao ◽  
Nan Pan ◽  
Junbin Qian

In distribution networks with distributed power supplies, distributed power supplies can also be used as backup power sources to support the grid. If a distribution network contains multiple distributed power sources, the distribution network becomes a complex power grid with multiple power supplies. When a short-circuit fault occurs at a certain point on the power distribution network, the size, direction and duration of the short-circuit current are no longer single due to the existence of distributed power, and will vary with the location and capacity of the distributed power supply system. The change, in turn, affects the current in the grid, resulting in the generation and propagation of additional current. This power grid of power electronics will cause problems such as excessive standard mis-operation, abnormal heating of the converter and component burnout, and communication system failure. It is of great and practical significance to study the influence of distributed power in distributed power distribution networks.


Author(s):  
Rilwan O. Oliyide ◽  
Liana M. Cipcigan

The impacts of uptake and electricity load profiles of Electric Vehicles (EVs) and Heat Pumps (HPs) on the low voltage (LV) distribution networks were analyzed. The United Kingdom (UK) has a legally mandated policy concerning reduction of greenhouse gasses (GHGs) emissions. Therefore, the integration of low carbon technologies (LCTs) especially EVs and HPs at the LV networks is expected to increase in the drive to reducing the GHGs emissions. Future uptake scenarios, adapted from the National Grid studies, of EVs and HPs were developed for a real and typical urban LV distribution network in Great Britain (GB). Gridlab-D, an agent-based power system simulation software, was used to model the LV distribution network. The model was run for four different scenarios considering seasonal load profiles and projected EVs and HPs uptakes for each of the year 2020, 2030, 2040 and 2050 respectively. The results were analyzed in terms of transformer loading, voltage profiles of the feeders, and the ampacity loading of the cables for the different scenarios of the years.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4125
Author(s):  
Miguel Carrión ◽  
Rafael Zárate-Miñano ◽  
Ruth Domínguez

The expected growth of the number of electric vehicles can be challenging for planning and operating power systems. In this sense, distribution networks are considered the Achilles’ heel of the process of adapting current power systems for a high presence of electric vehicles. This paper aims at deciding the maximum number of three-phase high-power charging points that can be installed in a low-voltage residential distribution grid. In order to increase the number of installed charging points, a mixed-integer formulation is proposed to model the provision of decentralized voltage support by electric vehicle chargers. This formulation is afterwards integrated into a modified AC optimal power flow formulation to characterize the steady-state operation of the distribution network during a given planning horizon. The performance of the proposed formulations have been tested in a case study based on the distribution network of La Graciosa island in Spain.


2019 ◽  
Vol 11 (23) ◽  
pp. 6657 ◽  
Author(s):  
Solhee Kim ◽  
Rylie E. O. Pelton ◽  
Timothy M. Smith ◽  
Jimin Lee ◽  
Jeongbae Jeon ◽  
...  

The environmental impact of battery electric vehicles (BEVs) largely depends on the environmental profile of the national electric power grid that enables their operation. The purpose of this study is to analyze the environmental performance of BEV usage in Korea considering the changes and trajectory of the national power roadmap. We examined the environmental performance using a weighted environmental index, considering eight impact categories. The results showed that the weighted environmental impact of Korea’s national power grid supply would increase overall by 66% from 2015 to 2029 using the plan laid out by the 7th Power Roadmap, and by only 33% from 2017 to 2031 using the 8th Power Roadmap plan. This change reflects the substantial amount of renewables in the more recent power mix plan. In 2016, BEV usage in Korea resulted in emissions reductions of about 37% compared with diesel passenger vehicles, and 41% compared with gasoline vehicles per kilometer driven (100 g CO2e/km versus 158 g and 170 g CO2e/km, respectively) related to transportation sector. By 2030, BEV usage in Korea is expected to achieve a greater emissions reduction of about 53% compared with diesel vehicles and 56% compared with gasoline vehicles. However, trade-offs are also expected because of increased particulate matter (PM) pollution, which we anticipate to increase by 84% compared with 2016 conditions. Despite these projected increases in PM emissions, increased BEV usage in Korea is expected to result in important global and local benefits through reductions of climate-changing greenhouse gas (GHG) emissions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248012
Author(s):  
Ernestina M. Amewornu ◽  
Nnamdi I. Nwulu

The balancing of supplied energy to energy demand is often very challenging due to unstable power supply and demand load. This challenge causes the level of performance of distribution networks to be lower than expected. Research has however, shown the role of demand response (DR) on the performance of power networks. This work investigates the influence of DR, in the presence of incorporated renewable energy, on technical loss reduction, reliability, environment, energy saved and incentives paid to consumers with the help of PSAT and AIMMS software. Results from simulation have shown that the introduction of renewable energy into a Ghanaian distribution network coupled with implementing the proposed DR improves total energy supply by 9.8% at a corresponding operation cost reduction of 72.79%. The GHG and technical loss reduced by 27.26% and 10.09% respectively. The total energy saving is about 105kWh and 5,394.86kWh, for domestic and commercial loading profiles, respectively. Incentives received by consumers range between 45.14% and 58.55% more than that enjoyed, without renewable energy, by domestic and commercial consumers. The utility benefit also increased by 76.96% and 67.31% for domestic and commercial loads than that without renewable energy. Network reliability improves with implementation of DR. However, the reliability of a grid-connected network is better with a diesel generator only than with the integration of renewable energy. The power distribution companies, therefore, need to consider the implementation of incentive-based demand response program.


Sign in / Sign up

Export Citation Format

Share Document