scholarly journals Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8265
Author(s):  
Sivagowri Shanmugaratnam ◽  
Elilan Yogenthiran ◽  
Ranjit Koodali ◽  
Punniamoorthy Ravirajan ◽  
Dhayalan Velauthapillai ◽  
...  

Development of efficient and affordable photocatalysts is of great significance for energy production and environmental sustainability. Transition metal chalcogenides (TMCs) with particle sizes in the 1–100 nm have been used for various applications such as photocatalysis, photovoltaic, and energy storage due to their quantum confinement effect, optoelectronic behavior, and their stability. In particular, TMCs and their heterostructures have great potential as an emerging inexpensive and sustainable alternative to metal-based catalysts for hydrogen evolution. Herein, the methods used for the fabrication of TMCs, characterization techniques employed, and the different methods of solar hydrogen production by using different TMCs as photocatalyst are reviewed. This review provides a summary of TMC photocatalysts for hydrogen production.

2016 ◽  
Vol 45 (2) ◽  
pp. 552-560 ◽  
Author(s):  
Wei Yang Lim ◽  
Minghui Hong ◽  
Ghim Wei Ho

In-situ aqueous photo-assisted deposition of transition metal chalcogenides co-catalyst has shown to infiltrate hierarchical host ZnIn2S4 photocatalyst for efficient photocatalytic hydrogen production and degradation under visible light.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3882 ◽  
Author(s):  
Sivagowri Shanmugaratnam ◽  
Dhayalan Velauthapillai ◽  
Punniamoorthy Ravirajan ◽  
Alfred Christy ◽  
Yohi Shivatharsiny

Transition metal chalcogenides have intensively focused on photocatalytic hydrogen production for a decade due to their stronger edge and the quantum confinement effect. This work mainly focuses on synthesis and hydrogen production efficiencies of cobalt disulfide (CoS2)-embedded TiO2 nanocomposites. Materials are synthesized by using a hydrothermal approach and the hydrogen production efficiencies of pristine CoS2, TiO2 nanoparticles and CoS2/TiO2 nanocomposites are compared under UV irradiation. A higher amount of hydrogen production (2.55 mmol g−1) is obtained with 10 wt.% CoS2/TiO2 nanocomposite than pristineTiO2 nanoparticles, whereas no hydrogen production was observed with pristine CoS2 nanoparticles. This result unveils that the metal dichalcogenide–CoS2 acts as an effective co-catalyst and nanocrystalline TiO2 serves as an active site by effectively separating the photogenerated electron–hole pair. This study lays down a new approach for developing transition metal dichalcogenide materials with significant bandgaps that can effectively harness solar energy for hydrogen production.


Author(s):  
Moritz Kölbach ◽  
Kira Rehfeld ◽  
Matthias M. May

We analyse the potential of solar hydrogen production in remote and cold world regions such as Antarctica and quantify the efficiency benefits of thermal coupling.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3437
Author(s):  
Andreas Rosenstiel ◽  
Nathalie Monnerie ◽  
Jürgen Dersch ◽  
Martin Roeb ◽  
Robert Pitz-Paal ◽  
...  

Global trade of green hydrogen will probably become a vital factor in reaching climate neutrality. The sunbelt of the Earth has a great potential for large-scale hydrogen production. One promising pathway to solar hydrogen is to use economically priced electricity from photovoltaics (PV) for electrochemical water splitting. However, storing electricity with batteries is still expensive and without storage only a small operating capacity of electrolyser systems can be reached. Combining PV with concentrated solar power (CSP) and thermal energy storage (TES) seems a good pathway to reach more electrolyser full load hours and thereby lower levelized costs of hydrogen (LCOH). This work introduces an energy system model for finding cost-optimal designs of such PV/CSP hybrid hydrogen production plants based on a global optimization algorithm. The model includes an operational strategy which improves the interplay between PV and CSP part, allowing also to store PV surplus electricity as heat. An exemplary study for stand-alone hydrogen production with an alkaline electrolyser (AEL) system is carried out. Three different locations with different solar resources are considered, regarding the total installed costs (TIC) to obtain realistic LCOH values. The study shows that a combination of PV and CSP is an auspicious concept for large-scale solar hydrogen production, leading to lower costs than using one of the technologies on its own. For today’s PV and CSP costs, minimum levelized costs of hydrogen of 4.04 USD/kg were determined for a plant located in Ouarzazate (Morocco). Considering the foreseen decrease in PV and CSP costs until 2030, cuts the LCOH to 3.09 USD/kg while still a combination of PV and CSP is the most economic system.


Sign in / Sign up

Export Citation Format

Share Document