scholarly journals Achieving Net Zero Emissions in Italy by 2050: Challenges and Opportunities

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 46
Author(s):  
Maria Gaeta ◽  
Corine Nsangwe Businge ◽  
Alberto Gelmini

This paper contributes to the climate policy discussion by focusing on the challenges and opportunities of reaching net zero emissions by 2050 in Italy. To support Italian energy planning, we developed energy roadmaps towards national climate neutrality, consistent with the Paris Agreement objectives and the IPCC goal of limiting the increase in global surface temperature to 1.5 °C. Starting from the Italian framework, these scenarios identify the correlations among the main pillars for the change of the energy paradigm towards net emissions by 2050. The energy scenarios were developed using TIMES-RSE, a partial equilibrium and technology-rich optimization model of the entire Italian energy system. Subsequently, an in-depth analysis was developed with the sMTISIM, a long-term simulator of power system and electricity markets. The results show that, to achieve climate neutrality by 2050, the Italian energy system will have to experience profound transformations on multiple and strongly related dimensions. A predominantly renewable-based energy mix (at least 80–90% by 2050) is essential to decarbonize most of the final energy consumption. However, the strong increase of non-programmable renewable sources requires particular attention to new flexibility resources needed for the power system, such as Power-to-X. The green fuels produced from renewables via Power-to-X will be a vital energy source for those sectors where electrification faces technical and economic barriers. The paper’s findings also confirm that the European “energy efficiency first” principle represents the very first step on the road to climate neutrality.

2021 ◽  
Vol 244 ◽  
pp. 10061
Author(s):  
Aleksei Altoukhov ◽  
Sergei Kashkin ◽  
Ekaterina Utkina

Bioeconomy is one of the leading science directions at the present time; countries and international organizations around the world pay close attention to it. They are actively working on policies and strategies for the transition to a bioeconomy. Bioeconomy is based on advances in microbiology that can be used in various processes associated with the use of biological resources; it is changing consumer preferences by bringing a new understanding of resource constraints. Despite the fact that a great contribution has already been made to the science of bioeconomy, much in it still refers to promising scientific developments in such areas as biology, biomedicine, engineering, artificial intelligence, technology, chemistry, etc. This paper provides an overview of the current strategies of different countries in the development and implementation of bioeconomy. Purpose of the work: systematization of target indicators and identification of the most significant among them for different economies. The results of the study point to the need for an in-depth analysis of the challenges and opportunities the world faces on the road to bioeconomy. In addition, it is shown the need to develop common global criteria for assessing the bioeconomic development.


2021 ◽  
Vol 1 ◽  
Author(s):  
A. P. M. Velenturf ◽  
A. R. Emery ◽  
D. M. Hodgson ◽  
N. L. M. Barlow ◽  
A. M. Mohtaj Khorasani ◽  
...  

Low carbon energy infrastructure, such as wind and solar farms, are crucial for reducing greenhouse gas emissions and limiting global temperature rise to 1.5°C. During 2020, 5.2 GW of offshore wind capacity went into operation worldwide, taking the total operational capacity of global offshore wind to 32.5 GW from 162 offshore windfarms, and over 200 GW of new capacity is planned by 2030. To meet net-zero targets, growth of offshore wind generation is expected, which raises new challenges, including integration of offshore wind into the natural environment and the wider energy system, throughout the wind farm lifecycle. This review examines the role of geosciences in addressing these challenges; technical sustainability challenges and opportunities are reviewed, filtered according to global governance priorities, and assessed according to the role that geoscience can play in providing solutions. We find that geoscience solutions play key roles in sustainable offshore wind energy development through two broad themes: 1) windfarm and infrastructure site conditions, and 2) infrastructure for transmission, conversion and energy storage. To conclude, we recommend priorities and approaches that will support geoscience contributions to offshore wind, and ultimately enable sustainable offshore wind development. Recommendations include industry collaboration and systems for effective data sharing and archiving, as well as further research, education and skills.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6382
Author(s):  
Lidia Gawlik ◽  
Eugeniusz Mokrzycki

In December 2019, the European Commission unveiled an ambitious project, the European Green Deal, which aims to lead the European Union to climate neutrality by 2050. This is a significant challenge for all EU countries, and especially for Poland. The role of hydrogen in the processes of decarbonization of the economy and transport is being discussed in many countries around the world to find rational solutions to this difficult and complex problem. There is an ongoing discussion about the hydrogen economy, which covers the production of hydrogen, its storage, transport, and conversion to the desired forms of energy, primarily electricity, mechanical energy, and new fuels. The development of the hydrogen economy can significantly support the achievement of climate neutrality. The belief that hydrogen plays an important role in the transformation of the energy sector is widespread. There are many technical and economic challenges, as well as legal and logistical barriers to deal with in the transition process. The development of hydrogen technologies and a global sustainable energy system that uses hydrogen offers a real opportunity to solve the challenges facing the global energy industry: meeting the need for clean fuels, increasing the efficiency of fuel and energy production, and significantly reducing greenhouse gas emissions. The paper provides an in-depth analysis of the Polish Hydrogen Strategy, a document that sets out the directions for the development of hydrogen use (competences and technologies) in the energy, transport, and industrial sectors. This analysis is presented against the background of the European Commission’s document ‘A Hydrogen Strategy for a Climate-Neutral Europe’. The draft project presented is a good basis for further discussion on the directions of development of the Polish economy. The Polish Hydrogen Strategy, although it was created later than the EU document, does not fully follow its guidelines. The directions for further work on the hydrogen strategy are indicated so that its final version can become a driving force for the development of the country’s economy.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1447-1452
Author(s):  
Vincent Mazauric ◽  
Ariane Millot ◽  
Claude Le Pape-Gardeux ◽  
Nadia Maïzi

To overcome the negative environemental impact of the actual power system, an optimal description of quasi-static electromagnetics relying on a reversible interpretation of the Faraday’s law is given. Due to the overabundance of carbon-free energy sources, this description makes it possible to consider an evolution towards an energy system favoring low-carbon technologies. The management for changing is then explored through a simplified linear-programming problem and an analogy with phase transitions in physics is drawn.


2021 ◽  
Vol 13 (5) ◽  
pp. 105
Author(s):  
Mohamed Yousif ◽  
Chaminda Hewage ◽  
Liqaa Nawaf

The COVID-19 pandemic provided a much-needed sanity check for IoT-inspired frameworks and solutions. IoT solutions such as remote health monitoring and contact tracing provided support for authorities to successfully manage the spread of the coronavirus. This article provides the first comprehensive review of key IoT solutions that have had an impact on COVID-19 in healthcare, contact tracing, and transportation during the pandemic. Each sector is investigated in depth; and potential applications, social and economic impact, and barriers for mass adaptation are discussed in detail. Furthermore, it elaborates on the challenges and opportunities for IoT framework solutions in the immediate post-COVID-19 era. To this end, privacy and security concerns of IoT applications are analyzed in depth and emerging standards and code of practices for mass adaptation are also discussed. The main contribution of this review paper is the in-depth analysis and categorization of sector-wise IoT technologies, which have the potential to be prominent applications in the new normal. IoT applications in each selected sector are rated for their potential economic and social impact, timeline for mass adaptation, and Technology Readiness Level (TRL). In addition, this article outlines potential research directions for next-generation IoT applications that would facilitate improved performance with preserved privacy and security, as well as wider adaptation by the population at large.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3800
Author(s):  
Sebastian Krapf ◽  
Nils Kemmerzell ◽  
Syed Khawaja Haseeb Khawaja Haseeb Uddin ◽  
Manuel Hack Hack Vázquez ◽  
Fabian Netzler ◽  
...  

Roof-mounted photovoltaic systems play a critical role in the global transition to renewable energy generation. An analysis of roof photovoltaic potential is an important tool for supporting decision-making and for accelerating new installations. State of the art uses 3D data to conduct potential analyses with high spatial resolution, limiting the study area to places with available 3D data. Recent advances in deep learning allow the required roof information from aerial images to be extracted. Furthermore, most publications consider the technical photovoltaic potential, and only a few publications determine the photovoltaic economic potential. Therefore, this paper extends state of the art by proposing and applying a methodology for scalable economic photovoltaic potential analysis using aerial images and deep learning. Two convolutional neural networks are trained for semantic segmentation of roof segments and superstructures and achieve an Intersection over Union values of 0.84 and 0.64, respectively. We calculated the internal rate of return of each roof segment for 71 buildings in a small study area. A comparison of this paper’s methodology with a 3D-based analysis discusses its benefits and disadvantages. The proposed methodology uses only publicly available data and is potentially scalable to the global level. However, this poses a variety of research challenges and opportunities, which are summarized with a focus on the application of deep learning, economic photovoltaic potential analysis, and energy system analysis.


Author(s):  
Thomas A. Ulrich ◽  
Roger Lew ◽  
Ronald L. Boring ◽  
Torrey Mortenson ◽  
Jooyoung Park ◽  
...  

Nuclear power plants are looking towards integrated energy systems to address the challenges faced by increasing competition from renewable energy and cheap natural gas in wholesale electricity markets. Electricity-hydrogen hybrid operations is one potential technology being explored. As part of this investigation a human factors team was integrated into the overall engineering project to develop a human system interface (HSI) for a novel system to extract steam for a coupled hydrogen production process. This paper presents the process used to perform the nuclear specific human factors engineering required to develop the HSI for this novel and unprecedented system. Furthermore, the early integration of the human factors team and the meaningful improvements to the engineering of the system itself in addition to the successful development of the HSI for this particular application are described. Lastly, the HSI developed is presented to demonstrate the culmination of the process and disseminate a potential HSI design for electricity-hydrogen hybrid operations that may be useful for others exploring similar integrated energy systems concepts.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6741
Author(s):  
Dzikri Firmansyah Hakam ◽  
Sudarso Kaderi Wiyono ◽  
Nanang Hariyanto

This research optimises the mix and structure of Generation Companies (GenCos) in the Sumatra power system, Indonesia. Market power, indicating the ability to raise prices profitably above the competitive level, tends to be a significant problem in the aftermath of electricity market restructuring. In the process of regulatory reform and the development of competitive electricity markets, it is desirable and practical to establish an efficient number of competitor GenCos. Simulations of a power system account for multi-plant mergers of GenCos subject to a regulatory measure of the Residual Supply Index and the influence of direct current load flow and the topology of the system. This study simulates the Sumatra power system in order to determine the following: optimal market structure, efficient GenCo generation mix, and the optimal number of competitive GenCos. Further, this study seeks to empirically optimise the electricity generation mix and electricity market structure of the Sumatra power system using DC load flow optimisation, market power index, and multi-plant monopoly analysis. The simulations include generation and transmission constraints to represent network constraints. This research is the first to analyse the Sumatra power system using imperfect (Cournot) competition modelling. Furthermore, this study is the first kind to optimise the mix and structure of the Sumatra generation power market. The guidelines and methodology in this research can be implemented in other countries characterised by a monopoly electricity utility company.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3437
Author(s):  
Andreas Rosenstiel ◽  
Nathalie Monnerie ◽  
Jürgen Dersch ◽  
Martin Roeb ◽  
Robert Pitz-Paal ◽  
...  

Global trade of green hydrogen will probably become a vital factor in reaching climate neutrality. The sunbelt of the Earth has a great potential for large-scale hydrogen production. One promising pathway to solar hydrogen is to use economically priced electricity from photovoltaics (PV) for electrochemical water splitting. However, storing electricity with batteries is still expensive and without storage only a small operating capacity of electrolyser systems can be reached. Combining PV with concentrated solar power (CSP) and thermal energy storage (TES) seems a good pathway to reach more electrolyser full load hours and thereby lower levelized costs of hydrogen (LCOH). This work introduces an energy system model for finding cost-optimal designs of such PV/CSP hybrid hydrogen production plants based on a global optimization algorithm. The model includes an operational strategy which improves the interplay between PV and CSP part, allowing also to store PV surplus electricity as heat. An exemplary study for stand-alone hydrogen production with an alkaline electrolyser (AEL) system is carried out. Three different locations with different solar resources are considered, regarding the total installed costs (TIC) to obtain realistic LCOH values. The study shows that a combination of PV and CSP is an auspicious concept for large-scale solar hydrogen production, leading to lower costs than using one of the technologies on its own. For today’s PV and CSP costs, minimum levelized costs of hydrogen of 4.04 USD/kg were determined for a plant located in Ouarzazate (Morocco). Considering the foreseen decrease in PV and CSP costs until 2030, cuts the LCOH to 3.09 USD/kg while still a combination of PV and CSP is the most economic system.


Sign in / Sign up

Export Citation Format

Share Document