scholarly journals Application of Porous Materials for CO2 Reutilization: A Review

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 63
Author(s):  
Amir Masoud Parvanian ◽  
Nasrin Sadeghi ◽  
Ahmad Rafiee ◽  
Cameron J. Shearer ◽  
Mehdi Jafarian

CO2 reutilization processes contribute to the mitigation of CO2 as a potent greenhouse gas (GHG) through reusing and converting it into economically valuable chemical products including methanol, dimethyl ether, and methane. Solar thermochemical conversion and photochemical and electrochemical CO2 reduction processes are emerging technologies in which solar energy is utilized to provide the energy required for the endothermic dissociation of CO2. Owing to the surface-dependent nature of these technologies, their performance is significantly reliant on the solid reactant/catalyst accessible surface area. Solid porous structures either entirely made from the catalyst or used as a support for coating the catalyst/solid reactants can increase the number of active reaction sites and, thus, the kinetics of CO2 reutilization reactions. This paper reviews the principles and application of porous materials for CO2 reutilization pathways in solar thermochemical, photochemical, and electrochemical reduction technologies. Then, the state of the development of each technology is critically reviewed and evaluated with the focus on the use of porous materials. Finally, the research needs and challenges are presented to further advance the implementation of porous materials in the CO2 reutilization processes and the commercialization of the aforementioned technologies.

Author(s):  
Evgeny Shafirovich ◽  
Allen Garcia

CO2 utilization for the production of valuable chemical products may help mitigate two global problems: increasing CO2 concentration in the atmosphere and depleting petroleum resources. Solar thermochemical cycles for CO2 splitting provide relatively high efficiencies of solar energy conversion while operating at realistic temperatures. In the present paper, the cycles proposed previously are reviewed and a novel cycle, based on SnO2/SnO redox reactions, is proposed. The results of thermodynamic calculations for the CO2 reduction step in this cycle are reported.


Author(s):  
Peter T. Smith ◽  
Sophia Weng ◽  
Christopher Chang

We present a bioinspired strategy for enhancing electrochemical carbon dioxide reduction catalysis by cooperative use of base-metal molecular catalysts with intermolecular second-sphere redox mediators that facilitate both electron and proton transfer. Functional synthetic mimics of the biological redox cofactor NADH, which are electrochemically stable and are capable of mediating both electron and proton transfer, can enhance the activity of an iron porphyrin catalyst for electrochemical reduction of CO<sub>2</sub> to CO, achieving a 13-fold rate improvement without altering the intrinsic high selectivity of this catalyst platform for CO<sub>2</sub> versus proton reduction. Evaluation of a systematic series of NADH analogs and redox-inactive control additives with varying proton and electron reservoir properties reveals that both electron and proton transfer contribute to the observed catalytic enhancements. This work establishes that second-sphere dual control of electron and proton inventories is a viable design strategy for developing more effective electrocatalysts for CO<sub>2</sub> reduction, providing a starting point for broader applications of this approach to other multi-electron, multi-proton transformations.


2019 ◽  
Author(s):  
David Wright ◽  
Fouad Husseini ◽  
Shunzhou Wan ◽  
Christophe Meyer ◽  
Herman Van Vlijmen ◽  
...  

<div>Here, we evaluate the performance of our range of ensemble simulation based binding free energy calculation protocols, called ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) for use in fragment based drug design scenarios. ESMACS is designed to generate reproducible binding affinity predictions from the widely used molecular mechanics Poisson-Boltzmann surface area (MMPBSA) approach. We study ligands designed to target two binding pockets in the lactate dehydogenase A target protein, which vary in size, charge and binding mode. When comparing to experimental results, we obtain excellent statistical rankings across this highly diverse set of ligands. In addition, we investigate three approaches to account for entropic contributions not captured by standard MMPBSA calculations: (1) normal mode analysis, (2) weighted solvent accessible surface area (WSAS) and (3) variational entropy. </div>


2018 ◽  
Vol 2 (21) ◽  
pp. 85-101
Author(s):  
Olga Shtyka ◽  
Łukasz Przybysz ◽  
Mariola Błaszczyk ◽  
Jerzy P. Sęk

The research focuses on the issues concerning a process of multiphase liquids transport in granular porous media driven by the capillary pressure. The current publication is meant to introduce the results of experimental research conducted to evaluate the kinetics of the imbibition and emulsions behavior inside the porous structures. Moreover, the influence of the dispersed phase concentration and granular media structure on the mentioned process was considered. The medium imbibition with emulsifier-stabilized emulsions composed of oil as the dispersed phase in concentrations of 10 vol%, 30 vol%, and 50 vol%, was investigated. The porous media consisted of oleophilic/hydrophilic beads with a fraction of 200–300 and 600–800 μm. The experimental results provided that the emulsions imbibition in such media depended stronger on its structure compare to single-phase liquids. The increase of the dispersed phase concentration caused an insignificant mass decreasing of the imbibed emulsions and height of its penetration in a sorptive medium. The concentrations of the imbibed dispersions exceeded their initial values, but reduced with permeants front raise in the granular structures that can be defined as the influential factor for wicking process kinetics.


2020 ◽  
Vol 43 ◽  
pp. 154-160 ◽  
Author(s):  
Xianglong Lu ◽  
Tianshui Yu ◽  
Hailing Wang ◽  
Lihua Qian ◽  
Ruichun Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document