scholarly journals Traffic and Energy Consumption Modelling of Electric Vehicles: Parameter Updating from Floating and Probe Vehicle Data

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 82
Author(s):  
Antonello Ignazio Croce ◽  
Giuseppe Musolino ◽  
Corrado Rindone ◽  
Antonino Vitetta

This paper focuses on the estimation of energy consumption of Electric Vehicles (EVs) by means of models derived from traffic flow theory and vehicle locomotion laws. In particular, it proposes a bi-level procedure with the aim to calibrate (or update) the whole parameters of traffic flow models and energy consumption laws by means of Floating Car Data (FCD) and probe vehicle data. The reported models may be part of a procedure for designing and planning transport and energy systems. This aim is to verify if, and in what amount, the existing parameters of the resistances/energy consumptions model calibrated in the literature for Internal Combustion Engines Vehicles (ICEVs) change for EVs, considering the above circular dependency between supply, demand, and supply–demand interaction. The final results concern updated parameters to be used for eco-driving and eco-routing applications for design and a planning transport system adopting a multidisciplinary approach. The focus of this manuscript is on the transport area. Experimental data concern vehicular data extracted from traffic (floating car data and probe vehicle data) and energy consumption data measured for equipped EVs performing trips inside a sub-regional area, located in the Città Metropolitana of Reggio Calabria (Italy). The results of the calibration process are encouraging, as they allow for updating parameters related to energy consumption and energy recovered in terms of EVs obtained from data observed in real conditions. The latter term is relevant in EVs, particularly on urban routes where drivers experience unstable traffic conditions.

Author(s):  
Monish Tandale ◽  
Jinwhan Kim ◽  
Karthik Palaniappan ◽  
P. K. Menon ◽  
Jay Rosenberger ◽  
...  

The traffic flow conditions in developing countries are predominantly heterogeneous. The early developed traffic flow models have been derived from fluid flow to capture the behavior of the traffic. The very first two-equation model derived from fluid flow is known as the Payne-Whitham or PW Model. Along with the traffic flow, this model also captures the traffic acceleration. However, the PW model adopts a constant driver behavior which cannot be ignored, especially in the situation of heterogeneous traffic.This research focuses on testing the PW model and its suitability for heterogeneous traffic conditions by observing the model response to a bottleneck on a circular road. The PW model is mathematically approximated using the Roe Decomposition and then the performance of the model is observed using simulations.


2017 ◽  
Vol 31 (34) ◽  
pp. 1750324 ◽  
Author(s):  
Hong Xiao ◽  
Hai-Jun Huang ◽  
Tie-Qiao Tang

Electric vehicle (EV) has become a potential traffic tool, which has attracted researchers to explore various traffic phenomena caused by EV (e.g. congestion, electricity consumption, etc.). In this paper, we study the energy consumption (including the fuel consumption and the electricity consumption) and emissions of heterogeneous traffic flow (that consists of the traditional vehicle (TV) and EV) under three traffic situations (i.e. uniform flow, shock and rarefaction waves, and a small perturbation) from the perspective of macro traffic flow. The numerical results show that the proportion of electric vehicular flow has great effects on the TV’s fuel consumption and emissions and the EV’s electricity consumption, i.e. the fuel consumption and emissions decrease while the electricity consumption increases with the increase of the proportion of electric vehicular flow. The results can help us better understand the energy consumption and emissions of the heterogeneous traffic flow consisting of TV and EV.


2008 ◽  
Vol 41 (2) ◽  
pp. 14078-14083 ◽  
Author(s):  
J.W.C. Van Lint ◽  
Serge P. Hoogendoorn ◽  
A. Hegyi

1998 ◽  
Vol 47 (11) ◽  
pp. 1761
Author(s):  
LV XIAO-YANG ◽  
LIU MU-REN ◽  
KONG LING-JING

2003 ◽  
Vol 36 (2) ◽  
pp. 289-293 ◽  
Author(s):  
H. Ez-Zahraouy ◽  
Z. Benrihane ◽  
A. Benyoussef

Sign in / Sign up

Export Citation Format

Share Document