scholarly journals Selective Recovery of Copper from a Synthetic Metalliferous Waste Stream Using the Thiourea-Functionalized Ion Exchange Resin Puromet MTS9140

Eng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 512-530
Author(s):  
Alex L. Riley ◽  
Christopher P. Porter ◽  
Mark D. Ogden

The extraction of Cu from mixed-metal acidic solutions by the thiourea-functionalized resin Puromet MTS9140 was studied. Despite being originally manufactured for precious metal recovery, a high selectivity towards Cu was observed over other first-row transition metals (>90% removal), highlighting a potential for this resin in base metal recovery circuits. Resin behaviour was characterised in batch-mode under a range of pH and sulphate concentrations and as a function of flow rate in a fixed-bed setup. In each instance, a high selectivity and capacity (max. 32.04 mg/g) towards Cu was observed and was unaffected by changes in solution chemistry. The mechanism of extraction was determined by XPS to be through reduction of Cu(II) to Cu(I) rather than chelation. Elution of Cu was achieved by the use of 0.5 M–1 M NaClO3. Despite effective Cu elution (82%), degradation of resin functionality was observed, and further detailed through the application of IC analysis to identify degradation by-products. This work is the first detailed study of a thiourea-functionalized resin being used to selectively target Cu from a complex multi-metal solution.

2020 ◽  
Vol 11 (10) ◽  
pp. 5467-5481 ◽  
Author(s):  
Thomas J. Robshaw ◽  
Keith Bonser ◽  
Glyn Coxhill ◽  
Robert Dawson ◽  
Mark D. Ogden

Abstract This work aims to contribute to addressing the global challenge of recycling and valorising spent potlining; a hazardous solid waste product of the aluminium smelting industry. This has been achieved using a simple two-step chemical leaching treatment of the waste, using dilute lixiviants, namely NaOH, H2O2 and H2SO4, and at ambient temperature. The potlining and resulting leachate were characterised by spectroscopy and microscopy to determine the success of the treatment, as well as the morphology and mineralogy of the solid waste. This confirmed that the potlining samples were a mixture of contaminated graphite and refractory materials, with high variability of composition. A large quantity of fluoride was solublised by the leaching process, as well as numerous metals, some of them toxic. The acidic and caustic leachates were combined and the aluminium and fluoride components were selectively extracted, using a modified ion-exchange resin, in fixed-bed column experiments. The resin performed above expectations, based on previous studies, which used a simulant feed, extracting fluoride efficiently from leachates of significantly different compositions. Finally, the fluoride and aluminium were coeluted from the column, using NaOH as the eluent, creating an enriched aqueous stream, relatively free from contaminants, from which recovery of synthetic cryolite can be attempted. Overall, the study accomplished several steps in the development of a fully-realised spent potlining treatment system. Graphic Abstract


2012 ◽  
Vol 66 (9) ◽  
pp. 1968-1976 ◽  
Author(s):  
Sandra Fernandes ◽  
Inês S. Romão ◽  
Carlos M. R. Abreu ◽  
Margarida J. Quina ◽  
Licínio M. Gando-Ferreira

This study aimed to assess the selective separation of Cr(III) from Fe(III) from liquid solutions by using a chelating ion exchange resin, Diaion CR 11, from Mitsubishi Chemical Corporation, in the H+ form. Equilibrium experiments with synthetic solutions of iron and chromium were carried out in batch mode. For both metals favorable adsorption isotherms were obtained, and the experimental data were well described by the Langmuir model. However, the resin exhibited higher affinity for iron than for chromium. The regeneration experiments revealed that, for both metals, HCl provided higher removal efficiencies than H2SO4 and HNO3. Moreover, precipitation with NaOH allows selectively separate chromium and iron to be stripped from the resin. Experiments in fixed bed operation were carried out to assess the dynamic behavior of the sorption of Cr(III) and Fe(III) into the tested resin by using synthetic and industrial solutions. The experiments with industrial effluent showed that the resin can remove low levels of contaminant transition metal ions, and thus the effluent can be purified for reuse of chromium during periods of 20–25 min. The resin regeneration was achieved with a sequential treatment with HCl and NaOH/H2O2. High efficiencies were observed for both monocomponent and multicomponent systems. A global strategy for separating and recovering Cr(III) from an effluent that also contains Fe(III) is presented, involving the integration of ion exchange (saturation and regeneration phases) and precipitation processes. In conclusion, our approach demonstrates that efficient separation of chromium and iron is possible if ion exchange operation in a fixed bed configuration is optimized and combined with conventional processes such as precipitation.


1999 ◽  
Vol 30 (3) ◽  
pp. 258-264 ◽  
Author(s):  
K. Madhavan Nampoothiri ◽  
Ashok Pandey

Investigations were carried out with the aim of producing L-glutamic acid from Brevibacterium sp. by utilizing a locally available starchy substrate, cassava (Manihot esculenta Crantz). Initial studies were carried out in shake flasks, which showed that even though the yield was high with 85-90 DE (Dextrose Equivalent value), the maximum conversion yield (~34%) was obtained by using only partially digested starch hydrolysate, i.e. 45-50 DE. Fermentations were carried out in batch mode in a 5 L fermenter, using suitably diluted cassava starch hydrolysate, using a 85-90 DE value hydrolysate. Media supplemented with nutrients resulted in an accumulation of 21 g/L glutamic acid with a fairly high (66.3%) conversation yield of glucose to glutamic acid (based on glucose consumed and on 81.74% theoretical conversion rate). The bioreactor conditions most conducive for maximum production were pH 7.5, temperature 30°C and an agitation of 180 rpm. When fermentation was conducted in fed-batch mode by keeping the residual reducing sugar concentration at 5% w/v, 25.0 g/L of glutamate was obtained after 40 h fermentation (16% more the batch mode). Chromatographic separation by ion-exchange resin was used for the recovery and purification of glutamic acid. It was further crystallized and separated by making use of its low solubility at the isoelectric point (pH 3.2).


2012 ◽  
Vol 629 ◽  
pp. 381-385 ◽  
Author(s):  
Jun Hui Li ◽  
Zhong Hua Hu ◽  
Ya Nan Wang ◽  
Hao Xiang ◽  
Zhi Rong Zhu

Methylation of toluene with methanol to synthesize p-Xylene was performed in a fixed-bed reactor. HZSM-5 zeolite as a catalyst was prepared by modification with La2O3. In addition, effect of steam treatment for La2O3-modified HZSM-5 on its catalytic performance was investigated as well. The properties of as-prepared catalysts were characterized by XRD, BET and NH3-TPD. The results indicate that modification with La2O3can narrow the size of HZSM-5 channel effectively. And more than 90% selectivity of p-Xylene is obtained over HZSM-5 with loading of 24% and 30% La2O3. However, above La2O3-modified HZSM-5 with high-selectivity exhibit a poor stability for time on-stream of the methylation reaction. Steam treatment of La2O3-modified HZSM-5 can improve its stability and shape selectivity, decreasing by-products. These effects can be attributed to distortion & narrowing of HZSM-5 channel and reduction of HZSM-5 strong Bronsted acid sites during steam treatment. As a result, the excellent catalytic performance is obtained over 24.0% La2O3-modified HZSM-5 by steam treatment at 773 K for 1.0 h, being 23% conversion of toluene, 93% selectivity of p-Xylene during time on-stream.


1967 ◽  
Vol 50 (8) ◽  
pp. 1221-1225 ◽  
Author(s):  
H.E. Walter ◽  
A.M. Sadler ◽  
D.G. Easterly ◽  
L.F. Edmondson

Sign in / Sign up

Export Citation Format

Share Document