scholarly journals Close Binary Stars in Planetary Nebulae through Gaia EDR3

2021 ◽  
Vol 7 (1) ◽  
pp. 40
Author(s):  
Iker González-Santamaría ◽  
Minia Manteiga ◽  
Carlos Dafonte

The aim of this work is to search for evidence of close binary stars associated with planetary nebulae (ionized stellar envelopes in expansion) by mining the astronomical archive of Gaia EDR3. For this task, using big data techniques, we selected a sample of central stars of planetary nebulae from almost 2000 million sources in an EDR3 database. Then, we analysed some of their parameters, which could provide clues about the presence of close binary systems, and we ran a statistical test to verify the results. Using this method, we concluded that red stars tend to show more affinity with close binarity than blue ones.

Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 85 ◽  
Author(s):  
Todd Hillwig

The increase in discovered close binary central stars of planetary nebulae is leading to a sufficiently large sample to begin to make broader conclusions about the effect of close binary stars on common envelope evolution and planetary nebula formation. Herein I review some of the recent results and conclusions specifically relating close binary central stars to nebular shaping, common envelope evolution off the red giant branch, and the total binary fraction and double degenerate fraction of central stars. Finally, I use parameters of known binary central stars to explore the relationship between the proto-planetary nebula and planetary nebula stages, demonstrating that the known proto-planetary nebulae are not the precursors of planetary nebulae with close binary central stars.


2001 ◽  
Vol 200 ◽  
pp. 23-32 ◽  
Author(s):  
Ian A. Bonnell

I review the possible formation mechanisms of close binary stars. The formation of close binary systems is problematic in that there is no theory that does not encounter significant difficulties or unknowns. Fission does not appear to occur in stars. Capture is unlikely to form many close binary systems except possibly amongst massive stars. Fragmentation can form close binary systems but these need to accrete the majority of their eventual mass. Furthermore, there appears to be a limited window in initial conditions that may preclude forming sufficient systems in this way. Possible alternatives include the orbital migration of a binary due to its circumbinary disk and the disintegration of a non-hierarchical multiple system.


1985 ◽  
Vol 19 (1) ◽  
pp. 584-606
Author(s):  
A. H. Batten ◽  
J. Smak ◽  
K. D. Abhyankar ◽  
J. Andersen ◽  
A. M. Cherepashchuk ◽  
...  

Research on close binary systems has continued at a high level during the past triennium, although the rate of growth is noticeably slower – probably reflecting the cutbacks in funds to which many of us are subject. There have also been changes of emphasis within the field, which are commented on in the pages that follow. These reflect both changing opportunities for observation and the natural development of the subject. In many areas, the time is ripe for a more critical look at ideas that previously seemed adequate.


Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 75 ◽  
Author(s):  
Natalia Ivanova ◽  
Jose Nandez

In the centers of some planetary nebulae are found close binary stars. The formation of those planetary nebulae was likely through a common envelope event, which transformed an initially-wide progenitor binary into the currently observed close binary, while stripping the outer layers away. A common envelope event proceeds through several qualitatively different stages, each of which ejects matter at its own characteristic speed, and with a different degree of symmetry. Here, we present how typical post-common envelope ejecta looks kinematically a few years after the start of a common envelope event. We also show some asymmetric features we have detected in our simulations (jet-like structures, lobes, and hemispheres).


1988 ◽  
Vol 20 (01) ◽  
pp. 569-594
Author(s):  
J. Smak ◽  
R.H. Koch ◽  
K.D. Abhyankar ◽  
J. Andersen ◽  
A.H. Batten ◽  
...  

During the XlXth General Assembly of the IAU in Delhi the number of members of Cotrmission 42 increased to 260. This simply reflects the growing interest and importance of our field. Growing is not only the number of astronomers involved in research on CBS but also the number of papers resulting from that activity. As an example one can quote the numbers of papers listed during the last few years in Sections 117 (Close Binaries), 119 (Eelipsing Binaries), and 120 (Spectroscopic Binaries) of theAstronomy and Astrophysics Abstracts:705(1982), 775(1983), 836(1984), 1080(1985), and 911(1986); note that many additional references could be added to these numbers from other sections. Naturally, such numbers alone do not reflect the quality and even less so the position and significance of the CBS field. Here one could perhaps mention an impressive record of successful research proposals involving requests for the observing time on large, ground based telescopes and on space instruments. Indeed, in spite of a very strong competition from other fields, programs involving CBS are usually placed very high on the priority lists (cf. Sections 2D and 2E). Obviously, the close binary systems, their evolution, and the physical processes which occur in them (accretion, stellar winds, nuclear burning, etc) appear interesting and important not only to those who are involved in their studies but also to astronomers from other fields.


Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 52
Author(s):  
Iker González-Santamaría ◽  
Minia Manteiga ◽  
Carlos Dafonte ◽  
Arturo Manchado ◽  
Ana Ulla

The aim of this work is to search for binary stars associated to planetary nebulae (ionized stellar envelopes in expansion), by mining the astronomical archive of Gaia DR2, that is composed by around 1.7 billion stellar sources. For this task, we selected those objects with coincident astrometric parameters (parallaxes and proper motions) with the corresponding central star, among a sample of 211 planetary nebulae. By this method, we found eight binary systems, and we obtained their components positions, separations, temperatures and luminosities, as well as some of their masses and ages. In addition, we estimated the probability for each companion star of having been detected by chance and we analyzed how the number of false matches increase as the separation distance between both stars gets larger. All these procedures have been carried out making use of data mining techniques.


2011 ◽  
Vol 7 (S283) ◽  
pp. 53-58
Author(s):  
Bruce Balick

AbstractThe Hubble Space Telescope has served the critical roles of microscope and movie camera in the past 20 years of research on planetary nebulae (“PNe”). We have glimpsed the details of the evolving structures of neutral and ionized post-AGB objects, built ingenious heuristic models that mimic these structures, and constrained most of the relevant physical processes with careful observations and interpretation. We have searched for close physical binary stars with spatial resolution ~50 AU at 1 AU, located jets emerging from the nucleus at speeds up to 2000 km s−1 and matched newly discovered molecular and X-ray emission regions to physical substructures in order to better understand how stellar winds and ionizing radiation interact to form the lovely symmetries that are observed. Ultraviolet spectra of CNO in PNe help to uncover how stars process deep inside AGB stars with unstable nuclear burning zones. HST broadband imaging has been at the forefront of uncovering surprisingly complex wind morphologies produced at the tip of the AGB, and has led to an increasing realization of the potentially vital roles of close binary stars and emerging magnetic fields in shaping stellar winds.


2004 ◽  
Vol 191 ◽  
pp. 235-238
Author(s):  
S. Cuevas ◽  
A. Iriarte ◽  
L.A. Martínez ◽  
F. Garfias ◽  
L. Sánchez ◽  
...  

AbstractGuieloa is the adaptive optics system project for the 2.1-m SPM telescope. This is a 19 sub-apertures curvature-type system. It corrects 8 Zernike terms. Guieloa is very similar to PUEO, the CFHT adaptive optics system and compensates the atmospheric turbulence from the R band to the K band. Among the planned applications of Guieloa are the study of OB binary systems, the detection of close binary stars, and the study of disks, jets and other phenomena associated with young stars.


Sign in / Sign up

Export Citation Format

Share Document