scholarly journals Mining of the Milky Way Star Archive Gaia-DR2. Searching for Binary Stars in Planetary Nebulae

Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 52
Author(s):  
Iker González-Santamaría ◽  
Minia Manteiga ◽  
Carlos Dafonte ◽  
Arturo Manchado ◽  
Ana Ulla

The aim of this work is to search for binary stars associated to planetary nebulae (ionized stellar envelopes in expansion), by mining the astronomical archive of Gaia DR2, that is composed by around 1.7 billion stellar sources. For this task, we selected those objects with coincident astrometric parameters (parallaxes and proper motions) with the corresponding central star, among a sample of 211 planetary nebulae. By this method, we found eight binary systems, and we obtained their components positions, separations, temperatures and luminosities, as well as some of their masses and ages. In addition, we estimated the probability for each companion star of having been detected by chance and we analyzed how the number of false matches increase as the separation distance between both stars gets larger. All these procedures have been carried out making use of data mining techniques.

2021 ◽  
Vol 7 (1) ◽  
pp. 40
Author(s):  
Iker González-Santamaría ◽  
Minia Manteiga ◽  
Carlos Dafonte

The aim of this work is to search for evidence of close binary stars associated with planetary nebulae (ionized stellar envelopes in expansion) by mining the astronomical archive of Gaia EDR3. For this task, using big data techniques, we selected a sample of central stars of planetary nebulae from almost 2000 million sources in an EDR3 database. Then, we analysed some of their parameters, which could provide clues about the presence of close binary systems, and we ran a statistical test to verify the results. Using this method, we concluded that red stars tend to show more affinity with close binarity than blue ones.


1974 ◽  
Vol 60 ◽  
pp. 377-381
Author(s):  
L. L. E. Braes

Thirty optically visible stellar sources have been observed in the radio continuum: four red dwarf flare stars, three novae, two red supergiants, eight binary systems, and 13 related peculiar objects. The observations of red dwarfs, novae, and supergiants are briefly reviewed. Their emission seems reasonably well understood. Binary systems such as Algol show erratic flaring; consistent explanations have not yet been given. The related peculiar objects, such as V1016 Cyg and MWC 349, are even less well understood. Some of them may have just arrived on the main sequence; others may be planetary nebulae in an early stage of formation.


2019 ◽  
Vol 489 (2) ◽  
pp. 2195-2203 ◽  
Author(s):  
David Jones ◽  
Ondřej Pejcha ◽  
Romano L M Corradi

ABSTRACT Recent studies have indicated that triple-star systems may play a role in the formation of an appreciable number of planetary nebulae, however, only one triple central star is known to date (and that system is likely too wide to have had much influence on the evolution of its component stars). Here, we consider the possibility that Sh 2-71 was formed by a triple system that has since broken apart. We present the discovery of two regions of emission, seemingly aligned with the proposed tertiary orbit (i.e. in line with the axis formed by the two candidate central star systems previously considered in the literature). We also perform a few simple tests of the plausibility of the triple hypothesis based on the observed properties (coordinates, radial velocities, distances, and proper motions) of the stars observed close to the projected centre of the nebula, adding further support through numerical integrations of binary orbits responding to mass loss. Although a number of open questions remain, we conclude that Sh 2-71 is currently one of the best candidates for planetary nebula formation influenced by triple-star interactions.


2021 ◽  
Vol 502 (2) ◽  
pp. 1908-1924
Author(s):  
Andrew Everall ◽  
Douglas Boubert ◽  
Sergey E Koposov ◽  
Leigh Smith ◽  
Berry Holl

ABSTRACT Gaia Data Release 2 (DR2) published positions, parallaxes, and proper motions for an unprecedented 1331 909 727 sources, revolutionizing the field of Galactic dynamics. We complement this data with the astrometry spread function (ASF), the expected uncertainty in the measured positions, proper motions, and parallax for a non-accelerating point source. The ASF is a Gaussian function for which we construct the 5D astrometric covariance matrix as a function of position on the sky and apparent magnitude using the Gaia DR2 scanning law and demonstrate excellent agreement with the observed data. This can be used to answer the question ‘What astrometric covariance would Gaia have published if my star was a non-accelerating point source?’. The ASF will enable characterization of binary systems, exoplanet orbits, astrometric microlensing events, and extended sources that add an excess astrometric noise to the expected astrometry uncertainty. By using the ASF to estimate the unit weight error of Gaia DR2 sources, we demonstrate that the ASF indeed provides a direct probe of the excess source noise. We use the ASF to estimate the contribution to the selection function of the Gaia astrometric sample from a cut on astrometric_sigma5d_max showing high completeness for G < 20 dropping to ${\lt} 1{{\ \rm per\ cent}}$ in underscanned regions of the sky for G = 21. We have added an ASF module to the python package scanninglaw (https://github.com/gaiaverse/scanninglaw) through which users can access the ASF.


2020 ◽  
Vol 644 ◽  
pp. A173
Author(s):  
I. González-Santamaría ◽  
M. Manteiga ◽  
A. Manchado ◽  
M. A. Gómez-Muñoz ◽  
A. Ulla ◽  
...  

Context. The Gaia Data Release 2 (DR2) was used to select a sample of 211 central stars of planetary nebulae (CSPNe) with good-quality astrometric measurements, which we refer to as Golden Astrometry Planetary Nebulae (GAPN). Gaia astrometric and photometric measurements allowed us to derive accurate distances and radii and to calculate luminosities with the addition of self-consistent literature values. Such information was used to plot the position of these stars in a Hertzsprung-Russel diagram and to study their evolutionary status in comparison with the evolutionary tracks of CSPNe. Aims. The extremely precise measurement of parallaxes and proper motions in Gaia DR2 has allowed us to search for wide binary companions in a region close to each of the central stars in the GAPN sample. We are interested in establishing the presence of binary companions at large separations which could allow to contribute additional information on the influence of binarity on the formation and evolution of planetary nebulae. We aim to study the evolutive properties of the binary pairs to check the consistency of spectral types and masses in order to better constrain the ages and evolutionary stage of the CSPNe. Methods. We limited our search to a region around 20 000 AU of each CSPN to minimise accidental detections. We only considered stars with reasonably good parallax and proper motions data, that is, with errors below 30% in DR2. We determined that the hypothetical binary pairs should show a statistically significant agreement for the three astrometric quantities, that is, parallax and both components of the proper motions. Results. We found eight wide binary systems among our GAPN sample, including one in a triple system. We compiled the astrometric and photometric measurements of these binary systems and discussed them in relation to previously published searches for binaries in PNe. By analysing the position in the HR diagram of the companion stars using Gaia photometry, we are able to estimate their temperatures, luminosities, masses and, for one star, the evolutionary age. The derived quantities yield a consistent scenario when compared with the corresponding values as obtained for the central stars using stellar evolutionary models in the postAGB phase.


2004 ◽  
Vol 194 ◽  
pp. 226-227 ◽  
Author(s):  
J. A. López ◽  
K. Escalante ◽  
H. Riesgo-Tirado

Planetary nebulae (PNe) represent a well defined stage of stellar evolution, where the characteristics of both, the central star and the gaseous envelope have defined properties. A large fraction of PNe contain binary nuclei, therefore, binary evolution plays an important role in the AGB and proto-planetary stages under certain circumstances. Symbiotic nebulae with extended envelopes (D-type), are identified with binary systems where the primary component is usually a Mira giant and the companion a hot white dwarf. Some of these systems resemble planetary nebulae and as a consequence can lead to misleading interpretations. Here we discuss some relevant links and differences between these two types of nebulae.


2016 ◽  
Vol 12 (S323) ◽  
pp. 367-368
Author(s):  
Zhuo Chen ◽  
Adam Frank ◽  
Eric G. Blackman ◽  
Jason Nordhaus ◽  
Jonathan Carroll-Nellenback

AbstractBinary stars can interact via mass transfer when one member (the primary) ascends onto a giant branch. The amount of gas ejected by the binary and the amount of gas accreted by the secondary over the lifetime of the primary influence the subsequent binary phenomenology. Some of the gas ejected by the binary will remain gravitationally bound and its distribution will be closely related to the formation of planetary nebulae. We investigate the nature of mass transfer in binary systems containing an AGB star by adding radiative transfer to the AstroBEAR AMR Hydro/MHD code.


1989 ◽  
Vol 107 ◽  
pp. 299-310
Author(s):  
Mario Livio

AbstractWe discuss the common envelope phase in the evolution of binary systems. The problem of the efficiency of energy deposition into envelope ejection is treated in some detail. We describe the implications of common envelope evolution for the shaping of planetary nebulae with close binary nuclei and for double white dwarf systems, considered to be the progenitors of Type I supernovae.


2017 ◽  
Vol 14 (S339) ◽  
pp. 330-330
Author(s):  
B. Miszalski ◽  
R. Manick ◽  
J. Mikołajewska ◽  
K. Iłkiewicz ◽  
D. Kamath ◽  
...  

AbstractIn the last decade great strides have been made in understanding the role of binary stars in the evolution and shaping of planetary nebulæ (PNe). Observational efforts have mainly focused on finding close binaries with orbital periods of 1 day or less. Those close binary systems make up around 1 in 5 PNe, and constitute the youngest accessible window into the aftermath of the critical and unobserved common-envelope (CE) phase of binary-star evolution. The poster focused on our recent work with the High Resolution Spectrograph (HRS) on the Southern African Large Telescope (SALT) to search for long-period binaries in PNe. Considerably less is known about such long-period binaries with orbital periods of weeks to years, but they may be fundamental to improving CE population synthesis models and for determining the total binary fraction of PNe. The queue-mode operation of SALT and the excellent sensitivity and stability of HRS (which is enclosed in a vacuum tank) are ideally suited to detecting binaries with low radial-velocity amplitudes over the expected timescales of weeks to years. Many exciting new discoveries about binaries have already been made in this newly-accessible southern horizon in time-domain astronomy thanks to the many unique advantages of SALT.


2021 ◽  
Vol 162 (6) ◽  
pp. 260
Author(s):  
Valeri V. Makarov ◽  
Claus Fabricius

Abstract Using the absolute astrometric positions and proper motions for common stars in the Hipparcos and Gaia catalogs separated by 24.75 yr in the mean epoch, we compute mass ratios for long-period, resolved binary systems without any astrophysical assumptions or dependencies, except the presence of inner binary subsystems that may perturb the observed mean proper motions. The mean epoch positions of binary companions from the Hipparcos Double and Multiple System Annex are used as the first epoch. The mean positions and proper motions of carefully cross-matched counterparts in Gaia EDR3 comprise the second epoch data. Selecting only results with sufficiently high signal-to-noise ratio and discarding numerous optical pairs, we construct a catalog of 248 binary systems, which is published online. Several cases with unusual properties or results are also discussed.


Sign in / Sign up

Export Citation Format

Share Document