scholarly journals A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and Sentinel 2A Data

Environments ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 36 ◽  
Author(s):  
Ana Teodoro ◽  
Ana Amaral

Forest areas in Portugal are often affected by fires. The objective of this work was to analyze the most fire-affected areas in Portugal in the summer of 2016 for two municipalities considering data from Landsat 8 OLI and Sentinel 2A MSI (prefire and postfire data). Different remote sensed data-derived indices, such as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR), could be used to identify burnt areas and estimate the burn severity. In this work, NDVI was used to evaluate the area burned, and NBR was used to estimate the burn severity. The results showed that the NDVI decreased considerably after the fire event (2017 images), indicating a substantial decrease in the photosynthesis activity in these areas. The results also indicate that the NDVI differences (dNDVI) assumes the highest values in the burned areas. The results achieved for both sensors regarding the area burned presented differences from the field data no higher than 13.3% (for Sentinel 2A, less than 7.8%). We conclude that the area burned estimated using the Sentinel 2A data is more accurate, which can be justified by the higher spatial resolution of this data.

Author(s):  
A. B. Baloloy ◽  
A. C. Blanco ◽  
B. S. Gana ◽  
R. C. Sta. Ana ◽  
L. C. Olalia

The Philippines has a booming sugarcane industry contributing about PHP 70 billion annually to the local economy through raw sugar, molasses and bioethanol production (SRA, 2012). Sugarcane planters adapt different farm practices in cultivating sugarcane, one of which is cane burning to eliminate unwanted plant material and facilitate easier harvest. Information on burned sugarcane extent is significant in yield estimation models to calculate total sugar lost during harvest. Pre-harvest burning can lessen sucrose by 2.7% - 5% of the potential yield (Gomez, et al 2006; Hiranyavasit, 2016). This study employs a method for detecting burn sugarcane area and determining burn severity through Differenced Normalized Burn Ratio (dNBR) using Landsat 8 Images acquired during the late milling season in Tarlac, Philippines. Total burned area was computed per burn severity based on pre-fire and post-fire images. Results show that 75.38% of the total sugarcane fields in Tarlac were burned with post-fire regrowth; 16.61% were recently burned; and only 8.01% were unburned. The monthly dNBR for February to March generated the largest area with low severity burn (1,436 ha) and high severity burn (31.14 ha) due to pre-harvest burning. Post-fire regrowth is highest in April to May when previously burned areas were already replanted with sugarcane. The maximum dNBR of the entire late milling season (February to May) recorded larger extent of areas with high and low post-fire regrowth compared to areas with low, moderate and high burn severity. Normalized Difference Vegetation Index (NDVI) was used to analyse vegetation dynamics between the burn severity classes. Significant positive correlation, rho = 0.99, was observed between dNBR and dNDVI at 5% level (p = 0.004). An accuracy of 89.03% was calculated for the Landsat-derived NBR validated using actual mill data for crop year 2015-2016.


2018 ◽  
Vol 229 ◽  
pp. 04012
Author(s):  
Suwarsono ◽  
Hana Listi Fitriana ◽  
Indah Prasasti ◽  
Muhammad Rokhis Khomarudin

This research tried to detect a burned area that occurred in the mountainous region of Java Island. During this time, forest and land fires mostly occur in lowland areas in Sumatra and Kalimantan. However, it is possible that this phenomenon also occurs in mountainous regions, especially the mountainous regions of Java Island. The data used were Landsat-8, the latest generation of the Landsat series. The research location was on the Northeast slope of Mt. Ijen in East Java. The research methods include radiometric correction, data fusion, sample training retrieval, reflectance pattern analysis, Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR) extraction, separability analysis, parameter selection for burned area detection, parameter test, and evaluation. The results show that ρ5 and NBRL parameter shows the highest values of D-values (most sensitive), to detect the burned area. Then, compared to ρ5, NDVI and NBRS, Normalized Burn Ratio long (NBRL) provide better results in detecting burned areas.


2020 ◽  
Vol 4 (4) ◽  
pp. 813-826
Author(s):  
Mohamed Elhag ◽  
Nese Yimaz ◽  
Jarbou Bahrawi ◽  
Silvena Boteva

AbstractForest fires are a common feature in the Mediterranean forests through the years, as a wide tract of forest fortune is lost because of the incendiary fires in the forests. The enormous damages caused by forest fires enhanced the efforts of scientists towards the attenuation of the negative effects of forest fire and consequently the minimization of biodiversity losses by searching more for the adequate distribution of attempts on forest fire prevention and, suppression. The multi-temporal Principal Components Analysis is applied to a pair of images of consecutive years obtained from Landsat-8 satellite to unconventional map and assess the spatial extent of the burned areas on the island of Thasos, Greece. First, the PCA was applied on the before fire image, and then a multi-temporal image is created from the 3rd, 4th, and 5th band of before and after images including Normalized Difference Vegetation Index to enhance the results. The results from the different steps of this analysis robustly mapped the burned areas by 82.28 ha confirmed by almost 85%. Are compared with data provided by the local forest service in order to assess their accuracy. The multi-temporal PCA outputs including NDVI (PC 4, PC %, and PC 6) give better accuracy due to its ability to distinguish the burned areas of older years and to the Normalized Difference Vegetation Index that gives better variance to the image.


2020 ◽  
Vol 12 (4) ◽  
pp. 741 ◽  
Author(s):  
Luigi Saulino ◽  
Angelo Rita ◽  
Antonello Migliozzi ◽  
Carmine Maffei ◽  
Emilia Allevato ◽  
...  

In Mediterranean countries, in the year 2017, extensive surfaces of forests were damaged by wildfires. In the Vesuvius National Park, multiple summer wildfires burned 88% of the Mediterranean forest. This unprecedented event in an environmentally vulnerable area suggests conducting spatial assessment of the mixed-severity fire effects for identifying priority areas and support decision-making in post-fire restoration. The main objective of this study was to compare the ability of the delta Normalized Burn Ratio (dNBR) spectral index obtained from Landsat-8 and Sentinel-2A satellites in retrieving burn severity levels. Burn severity levels experienced by the Mediterranean forest communities were defined by using two quali-quantitative field-based composite burn indices (FBIs), namely the Composite Burn Index (CBI), its geometrically modified version CBI (GeoCBI), and the dNBR derived from the two medium-resolution multispectral remote sensors. The accuracy of the burn severity map produced by using the dNBR thresholds developed by Key and Benson (2006) was first evaluated. We found very low agreement (0.15 < K < 0.21) between the burn severity class obtained from field-based indices (CBI and GeoCBI) and satellite-derived metrics (dNBR) from both Landsat-8 and Sentinel-2A. Therefore, the most appropriate dNBR thresholds were rebuilt by analyzing the relationships between two field-based (CBI and GeoCBI) and dNBR from Landsat-8 and Sentinel-2A. By regressing alternatively FBIs and dNBRs, a slightly stronger relationship between GeoCBI and dNBR metrics obtained from the Sentinel-2A remote sensor (R2 = 0.69) was found. The regressed dNBR thresholds showed moderately high classification accuracy (K = 0.77, OA = 83%) for Sentinel-2A, suggesting the appropriateness of dNBR-Sentinel 2A in assessing mixed-severity Mediterranean wildfires. Our results suggest that there is no single set of dNBR thresholds that are appropriate for all burnt biomes, especially for the low levels of burn severity, as biotic factors could affect satellite observations.


2020 ◽  
Vol 12 (11) ◽  
pp. 1735 ◽  
Author(s):  
Amal Chakhar ◽  
Damián Ortega-Terol ◽  
David Hernández-López ◽  
Rocío Ballesteros ◽  
José F. Ortega ◽  
...  

The launch of Sentinel-2A and B satellites has boosted the development of many applications that could benefit from the fine resolution of the supplied information, both in time and in space. Crop classification is a necessary task for efficient land management. We evaluated the benefits of combining Landsat-8 and Sentinel-2A information for irrigated crop classification. We also assessed the robustness and efficiency of 22 nonparametric classification algorithms for classifying irrigated crops in a semiarid region in the southeast of Spain. A parcel-based approach was proposed calculating the mean normalized difference vegetation index (NDVI) of each plot and the standard deviation to generate a calibration-testing set of data. More than 2000 visited plots for 12 different crops along the study site were utilized as ground truth. Ensemble classifiers were the most robust algorithms but not the most efficient because of their low prediction rate. Nearest neighbor methods and support vector machines have the best balance between robustness and efficiency as methods for classification. Although the F1 score is close to 90%, some misclassifications were found for spring crops (e.g., barley, wheat and peas). However, crops with quite similar cycles could be differentiated, such as purple garlic and white garlic, showing the powerfulness of the developed tool.


2021 ◽  
Author(s):  
Claudiu Valeriu Angearu ◽  
Irina Ontel ◽  
Anisoara Irimescu ◽  
Burcea Sorin

Abstract Hail is one of the dangerous meteorological phenomena facing society. The present study aims to analyze the hail event from 20 July 2020, which affected the villages of Urleasca, Traian, Silistraru and Căldăruşa from the Traian commune, Baragan Plain. The analysis was performed on agricultural lands, using satellite images in the optical domain: Sentinel-2A, Landsat-8, Terra MODIS, as well as the satellite product in the radar domain: Soil Water Index (SWI), and weather radar data. Based on Sentinel-2A images, a threshold of 0.05 of the Normalized Difference Vegetation Index (NDVI) difference was established between the two moments of time analyzed (14 and 21 July), thus it was found that about 4000 ha were affected. The results show that the intensity of the hail damage was directly proportional to the Land Surface Temperature (LST) difference values in Landsat-8, from 15 and 31 July. Thus, the LST difference values higher than 12° C were in the areas where NDVI suffered a decrease of 0.4-0.5. The overlap of the hail mask extracted from NDVI with the SWI difference situation at a depth of 2 cm from 14 and 21 July confirms that the phenomenon recorded especially in the west of the analyzed area, highlighted by the large values (greater than 55 dBZ) of weather radar reflectivity as well, indicating medium–large hail size. This research also reveals that satellite data is useful for cross validation of surface-based weather reports and weather radar derived products.


2017 ◽  
pp. 29-37 ◽  
Author(s):  
Ibrahim Molla ◽  
Emiliya Velizarova ◽  
Mariana Zaharinova

The forest fires influence on the plants and soil depends on the fire severity and time of exposure. Fire severity integrates physical, chemical and biological changes occurring in ecosystems on the area as a consequence of fire influence. The purpose of the current investigation was to examine the role of the forest fire severity on the vegetation cover of the area of Svilengrad Municipality, using NDVI (Normalized Difference Vegetation Index) before fire and after fire, derived from LANDSAT 8 TM/ETM images. The comparison of the data from NDVI and that observed on the terrain data was also targeted. The results show that NDVI are changed significantly in fire affected area depending on vegetation cover and type of fire. This index also is very sensitive to changes during time after fire occurrence. One year after fire occurrence the NDVI values increased to +0.305 (0.048) for whole studied area. Through dNDVI could be distinguish the recovery rates of the fire affected areas with different tree species.


2021 ◽  
Vol 14 (2) ◽  
pp. 607
Author(s):  
Noelto da Cruz Teixeira Da Cruz Teixeira ◽  
Victor Hugo de Morais Danelichen Hugo de Morais Danelichen

O bioma Cerrado é uma das mais ricas fitofisionomias existentes no Planeta com destaque no elevado índice de ocupação humana direcionada à produção agropecuária. Apesar de seu potencial biológico enfrenta ameaças constantes de queimadas devido à conversão da vegetação em parcelas destinada a agricultura e pastagens. Neste contexto o objetivo deste trabalho é estudar a dinâmica espacial e temporal das queimadas no município de Cuiabá-MT, relacionando com as variáveis microclimáticas, classes de vegetação e declividades do terreno com o uso de recursos, de sensoriamento remoto. Foram utilizados os índices espectrais, NBR, NBR2 e NDVI extraídos das imagens Landsat 8 e focos de calor fornecido pelo Banco de Dados de Queimadas do INPE (Instituto Nacional de Pesquisas Espaciais) no período de 2013 a 2017. Os índices espectrais foram extraídos de 25 imagens referente a órbita 226 e ponto 071, utilizando o programa Erdas Imagine e os mapas de fogo através do estimador de Kernel presente no ArcGis 10.3 a fim de avaliar a distribuição e o padrão das queimadas na área proposta. Os resultados avaliados a partir do conjunto dos índices espectrais e dos mapas de estimativa de Kernel mostraram que o município de Cuiabá apresentou um padrão sazonal de queimadas, evidenciando maiores volumes de queimadas nas formações savânicas e nos terrenos de declividades da classe suave-ondulado em todo o período estudado.Palavras-chave: OLI, precipitação, padrão espacial. Dynamics of Fires in the Municipality of Cuiabá-MT by Remote Sensing A B S T R A C T The Brazilian Cerrado biome has several phytophysiognomies and a high rate of human occupation, with emphasis on agricultural production. Despite its biological potential, it faces constant threats of burning due to the conversion of vegetation into plots for agriculture and pasture. In this context, the objective of this work was to identify and relate the spatial and temporal dynamics of the fires in the municipality of Cuiabá-MT, with the microclimate variables, classes of vegetation and slopes of the land through the use of remote sensing resources. The spectral indexes NBR (Normalized Burn Ratio, NBR2 (Variation of Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) extracted from Landsat 8 images and heat sources provided by the INPE (Instituto Nacional de Space Research) from 2013 to 2017. The spectral indexes were extracted from 25 images referring to orbit 226 and point 071, using the Erdas Imagine program, and the fire maps of the Kernel estimator present in ArcGis 10.3 in order to evaluate the distribution and the pattern of fires in the proposed area. There was a 50.68% coincidence of the total number of hot spots on the reference burned areas, with a higher percentage of 72.12% in 2017 and lower in 2014 of 12.95%. These results made it possible to elaborate maps with a characteristic burning pattern and to highlight the classes most affected by fire throughout the studied period. Keywords: OLI, fire, spatial pattern.


2020 ◽  
Vol 12 (5) ◽  
pp. 858 ◽  
Author(s):  
Alfonso Fernández-Manso ◽  
Carmen Quintano

Southern European countries, particularly Spain, are greatly affected by forest fires each year. Quantification of burned area is essential to assess wildfire consequences (both ecological and socioeconomic) and to support decision making in land management. Our study proposed a new synergetic approach based on hotspots and reflectance data to map burned areas from remote sensing data in Mediterranean countries. It was based on a widely used species distribution modeling algorithm, in particular the Maximum Entropy (MaxEnt) one-class classifier. Additionally, MaxEnt identifies variables with the highest contribution to the final model. MaxEnt was trained with hyperspectral indexes (from Earth-Observing One (EO-1) Hyperion data) and hotspot information (from Visible Infrared Imaging Radiometer Suite Near Real-Time 375 m active fire product). Official fire perimeter measurements by Global Positioning System acted as a ground reference. A highly accurate burned area estimation (overall accuracy = 0.99%) was obtained, and the indexes which most contributed to identifying burned areas included Simple Ratio (SR), Red Edge Normalized Difference Vegetation Index (NDVI750), Normalized Difference Water Index (NDWI), Plant Senescence Reflectance Index (PSRI), and Normalized Burn Ratio (NBR). We concluded that the presented methodology enables accurate burned area mapping in Mediterranean ecosystems and may easily be automated and generalized to other ecosystems and satellite sensors.


2021 ◽  
Vol 13 (3) ◽  
pp. 427
Author(s):  
Jieying Ma ◽  
Shuanggen Jin ◽  
Jian Li ◽  
Yang He ◽  
Wei Shang

Harmful algal blooms (hereafter HABs) pose significant threats to aquatic health and environmental safety. Although satellite remote sensing can monitor HABs at a large-scale, it is always a challenge to achieve both high spatial and high temporal resolution simultaneously with a single earth observation system (EOS) sensor, which is much needed for aquatic environment monitoring of inland lakes. This study proposes a multi-source remote sensing-based approach for HAB monitoring in Chaohu Lake, China, which integrates Terra/Aqua MODIS, Landsat 8 OLI, and Sentinel-2A/B MSI to attain high temporal and spatial resolution observations. According to the absorption characteristics and fluorescence peaks of HABs on remote sensing reflectance, the normalized difference vegetation index (NDVI) algorithm for MODIS, the floating algae index (FAI) and NDVI combined algorithm for Landsat 8, and the NDVI and chlorophyll reflection peak intensity index (ρchl) algorithm for Sentinel-2A/B MSI are used to extract HAB. The accuracies of the normalized difference vegetation index (NDVI), floating algae index (FAI), and chlorophyll reflection peak intensity index (ρchl) are 96.1%, 95.6%, and 93.8% with the RMSE values of 4.52, 2.43, 2.58 km2, respectively. The combination of NDVI and ρchl can effectively avoid misidentification of water and algae mixed pixels. Results revealed that the HAB in Chaohu Lake breaks out from May to November; peaks in June, July, and August; and more frequently occurs in the western region. Analysis of the HAB’s potential driving forces, including environmental and meteorological factors of temperature, rainfall, sunshine hours, and wind, indicated that higher temperatures and light rain favored this HAB. Wind is the primary factor in boosting the HAB’s growth, and the variation of a HAB’s surface in two days can reach up to 24.61%. Multi-source remote sensing provides higher observation frequency and more detailed spatial information on a HAB, particularly the HAB’s long-short term changes in their area.


Sign in / Sign up

Export Citation Format

Share Document