scholarly journals A Synergetic Approach to Burned Area Mapping Using Maximum Entropy Modeling Trained with Hyperspectral Data and VIIRS Hotspots

2020 ◽  
Vol 12 (5) ◽  
pp. 858 ◽  
Author(s):  
Alfonso Fernández-Manso ◽  
Carmen Quintano

Southern European countries, particularly Spain, are greatly affected by forest fires each year. Quantification of burned area is essential to assess wildfire consequences (both ecological and socioeconomic) and to support decision making in land management. Our study proposed a new synergetic approach based on hotspots and reflectance data to map burned areas from remote sensing data in Mediterranean countries. It was based on a widely used species distribution modeling algorithm, in particular the Maximum Entropy (MaxEnt) one-class classifier. Additionally, MaxEnt identifies variables with the highest contribution to the final model. MaxEnt was trained with hyperspectral indexes (from Earth-Observing One (EO-1) Hyperion data) and hotspot information (from Visible Infrared Imaging Radiometer Suite Near Real-Time 375 m active fire product). Official fire perimeter measurements by Global Positioning System acted as a ground reference. A highly accurate burned area estimation (overall accuracy = 0.99%) was obtained, and the indexes which most contributed to identifying burned areas included Simple Ratio (SR), Red Edge Normalized Difference Vegetation Index (NDVI750), Normalized Difference Water Index (NDWI), Plant Senescence Reflectance Index (PSRI), and Normalized Burn Ratio (NBR). We concluded that the presented methodology enables accurate burned area mapping in Mediterranean ecosystems and may easily be automated and generalized to other ecosystems and satellite sensors.

2018 ◽  
Vol 229 ◽  
pp. 04012
Author(s):  
Suwarsono ◽  
Hana Listi Fitriana ◽  
Indah Prasasti ◽  
Muhammad Rokhis Khomarudin

This research tried to detect a burned area that occurred in the mountainous region of Java Island. During this time, forest and land fires mostly occur in lowland areas in Sumatra and Kalimantan. However, it is possible that this phenomenon also occurs in mountainous regions, especially the mountainous regions of Java Island. The data used were Landsat-8, the latest generation of the Landsat series. The research location was on the Northeast slope of Mt. Ijen in East Java. The research methods include radiometric correction, data fusion, sample training retrieval, reflectance pattern analysis, Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR) extraction, separability analysis, parameter selection for burned area detection, parameter test, and evaluation. The results show that ρ5 and NBRL parameter shows the highest values of D-values (most sensitive), to detect the burned area. Then, compared to ρ5, NDVI and NBRS, Normalized Burn Ratio long (NBRL) provide better results in detecting burned areas.


Author(s):  
Q. Zhang ◽  
Y. Xiao

Abstract. In the current situation of frequent forest fires, the study of forest burned area mapping is important. However, there is still room for improvement in the accuracy of existing forest burning area mapping methods. Therefore, in this paper, an unsupervised method based on fire index enhancement and GRNN (General Regression Neural Network) is proposed for automated forest burned area mapping from single-date post-fire remote sensing imagery. The proposed method first uses adaptive spatial context information to enhance the generated fire index to improve its ability to indicate the burned areas. Then the uncertainty analysis is performed on the enhanced fire index to extract reliable burned samples and non-burned samples for subsequent classifier training. Finally, the improved GRNN model considering the spatial correlation of pixels is used as a classifier to binarize the enhanced fire index to generate the final burned area map. Based on two commonly used fire indexes, NBR (Normalized Burn Ratio) and BAI (Burned Area Index), this paper conducts burned area mapping experiments on a post-fire image of a forest area in Inner Mongolia, China to test the effectiveness of the proposed method, and two commonly used threshold methods (Otsu and Kmeans clustering) are also used to conduct burned area mapping based on threshold segmentation of fire index for comparison experiments. The experimental results prove the effectiveness and superiority of the proposed method. The proposed method is unsupervised and automated, so it has high application value and potential under the current situation of frequent forest fires.


2020 ◽  
Vol 48 (3) ◽  
pp. 1667-1682
Author(s):  
Artan HYSA ◽  
Zydi TEQJA

Extreme weather conditions characterized by increased peak temperatures and stretched draught seasons are expected to boost up wildfire vulnerability in Mediterranean countries such as Albania. Thus, estimations about wildfire spread capacities of the territory are crucial. In this paper we introduce four new parameters into the indexing method for classifying the forested lands by their wildfire spreading capacity (WSCI). Land cover type via Corine Land Cover (CLC), Plant heat zones, Tree cover density (TCD), and Normalized difference vegetation index (NDVI) are integrated along with the previous set of criteria. The analytical steps of the process are performed in QGIS software including the Semi-Automatic Classification Plugin (SCP) which is useful in calculating NDVI values. The diversity among the inventory values of the selected criteria urges for a normalizing procedure within QGIS. Besides, each criterion is foreseen to have a specific impact on the WSCI value, which is weighted via Analytic Hierarchy Process (AHP). The sum of the products of the normalized class and the weighted impact factor of each criterion generates the WSCI value. The validation relies on the comparison between the index values of points being located within the burned areas and the values of the remaining locations. The results have shown that the former set of points have higher WSCI mean value then the latter group of points. Lastly, the parametric vulnerability assessment method presented here enables useful materials in support of wildfire risk reduction within the national priorities of disaster risk management and fire safety agendas in Albania. 


Environments ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 36 ◽  
Author(s):  
Ana Teodoro ◽  
Ana Amaral

Forest areas in Portugal are often affected by fires. The objective of this work was to analyze the most fire-affected areas in Portugal in the summer of 2016 for two municipalities considering data from Landsat 8 OLI and Sentinel 2A MSI (prefire and postfire data). Different remote sensed data-derived indices, such as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR), could be used to identify burnt areas and estimate the burn severity. In this work, NDVI was used to evaluate the area burned, and NBR was used to estimate the burn severity. The results showed that the NDVI decreased considerably after the fire event (2017 images), indicating a substantial decrease in the photosynthesis activity in these areas. The results also indicate that the NDVI differences (dNDVI) assumes the highest values in the burned areas. The results achieved for both sensors regarding the area burned presented differences from the field data no higher than 13.3% (for Sentinel 2A, less than 7.8%). We conclude that the area burned estimated using the Sentinel 2A data is more accurate, which can be justified by the higher spatial resolution of this data.


2020 ◽  
Vol 4 (4) ◽  
pp. 813-826
Author(s):  
Mohamed Elhag ◽  
Nese Yimaz ◽  
Jarbou Bahrawi ◽  
Silvena Boteva

AbstractForest fires are a common feature in the Mediterranean forests through the years, as a wide tract of forest fortune is lost because of the incendiary fires in the forests. The enormous damages caused by forest fires enhanced the efforts of scientists towards the attenuation of the negative effects of forest fire and consequently the minimization of biodiversity losses by searching more for the adequate distribution of attempts on forest fire prevention and, suppression. The multi-temporal Principal Components Analysis is applied to a pair of images of consecutive years obtained from Landsat-8 satellite to unconventional map and assess the spatial extent of the burned areas on the island of Thasos, Greece. First, the PCA was applied on the before fire image, and then a multi-temporal image is created from the 3rd, 4th, and 5th band of before and after images including Normalized Difference Vegetation Index to enhance the results. The results from the different steps of this analysis robustly mapped the burned areas by 82.28 ha confirmed by almost 85%. Are compared with data provided by the local forest service in order to assess their accuracy. The multi-temporal PCA outputs including NDVI (PC 4, PC %, and PC 6) give better accuracy due to its ability to distinguish the burned areas of older years and to the Normalized Difference Vegetation Index that gives better variance to the image.


Author(s):  
C. Li ◽  
Y. Zhong ◽  
W. Zhang

Hong Lake is the largest lake in Hubei Province. With the increase of Hong Lake economic activity, the area, spatial location and shape of Hong Lake have changed greatly in the past. In this paper, we used the images, which is from the visible infrared imaging radiometer (VIIRS). First, we selected the images of Hong Lake waters on December 6, 2016 and December 26, 2015. Then we extracted the water bodies by the single-band method, spectral relationship method, normalized difference water index (<i>NDWI</i>) were used, and the effect-s were compared. Second, the images of Hong Lake waters in summer and winter were selected from 2012 to 2016, respectively. Last, The <i>NDWI</i> was used to extract the water body and compared with the MODIS image extraction effect in the same period. As a result of the vegetation around Hong Lake, the water is extracted by <i>NDWI</i> and normalized difference vegetation index (<i>NDVI</i>). It is found that for the VIIRS image, the <i>NDWI</i> is the best in the water extraction of Hong Lake. The <i>NDVI</i> + <i>NDWI</i> method is beneficial to the extraction of water covered with aquatic plants. VIIRS image extraction is better than MODIS image. In addition, from the study of VIIRS and MODIS to Hong Lake waters in the five years of water extraction and area calculation, 2012&amp;ndash;2016 period, Hong Lake’s average area of 348.213&amp;thinsp;km<sup>2</sup> in flood season, in dry season average area of 349.163&amp;thinsp;km<sup>2</sup>. The largest area for the 2012 flood season 389.751&amp;thinsp;km<sup>2</sup>, the smallest area of 2016 flood season 306.177&amp;thinsp;km<sup>2</sup>. Overall, Hong Lake’s area changes little.


2020 ◽  
Vol 13 (11) ◽  
pp. 5955-5975
Author(s):  
Hai Zhang ◽  
Shobha Kondragunta ◽  
Istvan Laszlo ◽  
Mi Zhou

Abstract. The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) series enables retrieval of aerosol optical depth (AOD) from geostationary satellites using a multiband algorithm similar to those of polar-orbiting satellites' sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). However, this work demonstrates that the current version of GOES-16 (GOES-East) ABI AOD has diurnally varying biases due to limitations in the land surface reflectance relationships between the 0.47 µm band and the 2.2 µm band and between the 0.64 µm band and 2.2 µm band used in the ABI AOD retrieval algorithm, which vary with the Sun–satellite geometry and NDVI (normalized difference vegetation index). To reduce these biases, an empirical bias correction algorithm has been developed based on the lowest observed ABI AOD of an adjacent 30 d period and the background AOD at each time step and at each pixel. The bias correction algorithm improves the performance of ABI AOD compared to AErosol RObotic NETwork (AERONET) AOD, especially for the high and medium (top 2) quality ABI AOD. AOD data for the period 6 August to 31 December 2018 are used to evaluate the bias correction algorithm. After bias correction, the correlation between the top 2 quality ABI AOD and AERONET AOD improves from 0.87 to 0.91, the mean bias improves from 0.04 to 0.00, and root-mean-square error (RMSE) improves from 0.09 to 0.05. These results for the bias-corrected top 2 qualities ABI AOD are comparable to those of the corrected high-quality ABI AOD. By using the top 2 qualities of ABI AOD in conjunction with the bias correction algorithm, the areal coverage of ABI AOD is increased by about 100 % without loss of data accuracy.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5423
Author(s):  
Shou-Hao Chiang ◽  
Noel Ivan Ulloa

Wildfires are considered one of the most major hazards and environmental issues worldwide. Recently, Earth observation satellite (EOS) sensors have proven to be effective for wildfire detection, although the quality and usefulness of the data are often hindered by cloud presence. One practical workaround is to combine datasets from multiple sensors. This research presents a methodology that utilizes data of the recently-launched Sentinel-3 sea and land surface temperature radiometer (S3-SLSTR) to reflect its applicability for detecting wildfires. In addition, visible infrared imaging radiometer suite day night band (VIIRS-DNB) imagery was introduced to assure day-night tracking capabilities. The wildfire event in the Indio Maiz Biological Reserve, Nicaragua, during 3–13 April 2018, was the study case. Six S3-SLSTR images were processed to compute spectral indices, such as the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), and the normalized burn ratio (NBR), to perform image segmentation for estimating the burnt area. The results indicate that 5870.7 ha of forest was affected during the wildfire, close to the 5945 ha reported by local authorities. In this study, the fire expansion was delineated and tracked in the Indio Maiz Biological Reserve using a modified fast marching method on nighttime-sensed temporal VIIRS-DNB. This study shows the importance of S3-SLSRT for wildfire monitoring and how it can be complemented with VIIRS-DNB to track burning biomass at daytime and nighttime.


Drones ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 43 ◽  
Author(s):  
Sathishkumar Samiappan ◽  
Lee Hathcock ◽  
Gray Turnage ◽  
Cary McCraine ◽  
Jonathan Pitchford ◽  
...  

Wildfires can be beneficial for native vegetation. However, wildfires can impact property values, human safety, and ecosystem function. Resource managers require safe, easy to use, timely, and cost-effective methods for quantifying wildfire damage and regeneration. In this work, we demonstrate an approach using an unmanned aerial system (UAS) equipped with a MicaSense RedEdge multispectral sensor to classify and estimate wildfire damage in a coastal marsh. We collected approximately 7.2 km2 of five-band multispectral imagery after a wildfire event in February 2016, which was used to create a photogrammetry-based digital surface model (DSM) and orthomosaic for object-based classification analysis. Airborne light detection and ranging data were used to validate the accuracy of the DSM. Four-band airborne imagery from pre- and post-fire were used to estimate pre-fire health, post-fire damage, and track the vegetation recovery process. Immediate and long-term post-fire classifications, area, and volume of burned regions were produced to track the revegetation progress. The UAS-based classification produced from normalized difference vegetation index and DSM was compared to the Landsat-based Burned Area Reflectance Classification. Experimental results show the potential of using UAS and the presented approach compared to satellite-based mapping in terms of classification accuracies, turnaround time, and spatial and temporal resolutions.


2020 ◽  
Vol 12 (12) ◽  
pp. 2061 ◽  
Author(s):  
Carlos Ivan Briones-Herrera ◽  
Daniel José Vega-Nieva ◽  
Norma Angélica Monjarás-Vega ◽  
Jaime Briseño-Reyes ◽  
Pablito Marcelo López-Serrano ◽  
...  

In contrast with current operational products of burned area, which are generally available one month after the fire, active fires are readily available, with potential application for early evaluation of approximate fire perimeters to support fire management decision making in near real time. While previous coarse-scale studies have focused on relating the number of active fires to a burned area, some local-scale studies have proposed the spatial aggregation of active fires to directly obtain early estimate perimeters from active fires. Nevertheless, further analysis of this latter technique, including the definition of aggregation distance and large-scale testing, is still required. There is a need for studies that evaluate the potential of active fire aggregation for rapid initial fire perimeter delineation, particularly taking advantage of the improved spatial resolution of the Visible Infrared Imaging Radiometer (VIIRS) 375 m, over large areas and long periods of study. The current study tested the use of convex hull algorithms for deriving coarse-scale perimeters from Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) active fire detections, compared against the mapped perimeter of the MODIS collection 6 (MCD64A1) burned area. We analyzed the effect of aggregation distance (750, 1000, 1125 and 1500 m) on the relationships of active fire perimeters with MCD64A1, for both individual fire perimeter prediction and total burned area estimation, for the period 2012–2108 in Mexico. The aggregation of active fire detections from MODIS and VIIRS demonstrated a potential to offer coarse-scale early estimates of the perimeters of large fires, which can be available to support fire monitoring and management in near real time. Total burned area predicted from aggregated active fires followed the same temporal behavior as the standard MCD64A1 burned area, with potential to also account for the role of smaller fires detected by the thermal anomalies. The proposed methodology, based on easily available algorithms of point aggregation, is susceptible to be utilized both for near real-time and historical fire perimeter evaluation elsewhere. Future studies might test active fires aggregation between regions or biomes with contrasting fuel characteristics and human activity patterns against medium resolution (e.g., Landsat and Sentinel) fire perimeters. Furthermore, coarse-scale active fire perimeters might be utilized to locate areas where such higher-resolution imagery can be downloaded to improve the evaluation of fire extent and impact.


Sign in / Sign up

Export Citation Format

Share Document