scholarly journals Dynamic Simulation of the Crown Net Photosynthetic Rate for Young Larix olgensis Henry Trees

Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 321
Author(s):  
Qiang Liu ◽  
Longfei Xie ◽  
Fengri Li

Numerical integration of the instantaneous net photosynthetic rate (An) is a common method for calculating the long-term CO2 uptake of trees, and accurate dynamic simulation of the crown An has been receiving substantial attention. Tree characteristics are challenging to assess given their aerodynamically coarse crown properties, spatiotemporal variation in leaf functional traits and microenvironments. Therefore, the variables associated with the dynamic variations in the crown An must be identified. The relationships of leaf temperature (Tleaf), the vapor pressure deficit (VPD), leaf mass per area (LMA) and the relative depth into the crown (RDINC) with the parameters of the photosynthetic light-response (PLR) model of Larix olgensis Henry were analyzed. The LMA, RDINC and VPD were highly correlated with the maximum net photosynthetic rate (Amax). The VPD was the key variable that mainly determined the variation in the apparent quantum yield (AQY). Tleaf exhibited a significant exponential correlation with the dark respiration rate (Rd). According to the above correlations, the crown PLR model of L. olgensis trees was constructed by linking VPD, LMA and RDINC to the original PLR equation. The model performed well, with a high coefficient of determination (R2) value (0.883) and low root mean square error (RMSE) value (1.440 μmol m−2 s−1). The extinction coefficient (k) of different pseudowhorls within a crown was calculated by the Beer–Lambert equation based on the observed photosynthetically active radiation (PAR) distribution. The results showed that k was not a constant value but varied with the RDINC, solar elevation angle (ψ) and cumulative leaf area of the whole crown (CLA). Thus, we constructed a k model by reparameterizing the power function of RDINC with the ψ and CLA, and the PAR distribution within a crown was therefore well estimated (R2 = 0.698 and RMSE = 174.4 μmol m−2 s−1). Dynamic simulation of the crown An for L. olgensis trees was achieved by combining the crown PLR model and dynamic PAR distribution model. Although the models showed some weakened physiological biochemical processes during photosynthesis, they enabled the estimation of long-term CO2 uptake for an L. olgensis plantation, and the results could be easily fitted to gas-exchange measurements.

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 522 ◽  
Author(s):  
Qiang Liu ◽  
Fengri Li

Understanding the spatial and seasonal variations in leaf physiology is critical for accurately modeling the carbon uptake, physiological processes and growth of entire canopies and stands. For a 17-year-old Larix olgensis Henry plantation, vertical whorl-by-whorl sampling and analyses of seasonally repeated measurements of major photosynthetic parameters were conducted, and the correlations between photosynthetic parameters and environmental conditions, leaf morphological traits and spatial position within the crown were analyzed. According to the correlations, the photosynthetic parameters were standardized based on the environmental conditions to avoid the influence of the changing environment on the patterns of spatial and seasonal variations of photosynthetic parameters. The results showed that the standardized light-saturated net photosynthetic rate (SPmax), standardized dark respiration (SRd) and standardized stomatal conductance under saturated light (Sgs-sat) were all negatively related to the relative depth into the crown (RDINC) throughout the growing season. However, their vertical patterns were different during the development of the phenological phase. In addition, different gradients of environmental conditions also influenced the values and the range of the vertical variation in photosynthesis. High temperature and low humidity usually resulted in smaller values and weaker vertical variations of SPmax and Sgs-sat, but larger values and more obvious vertical variations in SRd. SPmax and Sgs-sat usually exhibited a parabolic seasonal pattern in different vertical positions within the crown; however, SRd generally followed a concave pattern. These seasonal patterns were all weaker with increasing RDINC. Different environments also exhibited a significant influence on the seasonal patterns of photosynthesis. We suggested that standardization is necessary before analyzing spatial and seasonal variations. A single environmental condition could not represent the spatial and seasonal patterns under all gradients of the environment. Spatial and seasonal variations should be simultaneously analyzed because they are related to each other.


2009 ◽  
Vol 17 (3) ◽  
pp. 474-478
Author(s):  
Qun-Long LIU ◽  
Chan-Juan NING ◽  
Duo WANG ◽  
Guo-Liang WU ◽  
Hong-Mei ZHANG ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinli Bi ◽  
Huili Zhou

AbstractA well-developed canopy structure can increase the biomass accumulation and yield of crops. Peanut seeds were sown in a soil inoculated with an arbuscular mycorrhizal fungus (AMF) and uninoculated controls were also sown. Canopy structure was monitored using a 3-D laser scanner and photosynthetic characteristics with an LI-6400 XT photosynthesis system after 30, 45 and 70 days of growth to explore the effects of the AMF on growth, canopy structure and photosynthetic characteristics and yield. The AMF colonized the roots and AMF inoculation significantly increased the height, canopy width and total leaf area of the host plants and improved canopy structure. AMF reduced the tiller angle of the upper and middle canopy layers, increased that of the lower layer, reduced the leaf inclination of the upper, middle and lower layers, and increased the average leaf area and leaf area index after 45 days of growth, producing a well-developed and hierarchical canopy. Moreover, AMF inoculation increased the net photosynthetic rate in the upper, middle and lower layers. Plant height, canopy width, and total leaf area were positively correlated with net photosynthetic rate, and the inclination angle and tiller angle of the upper leaves were negatively correlated with net photosynthetic rate. Overall, the results demonstrate the effects of AMF inoculation on plant canopy structure and net photosynthetic rate.


Plant Science ◽  
2005 ◽  
Vol 169 (3) ◽  
pp. 523-531 ◽  
Author(s):  
K. Mosaleeyanon ◽  
S.M.A. Zobayed ◽  
F. Afreen ◽  
T. Kozai

1994 ◽  
Vol 9 (3) ◽  
pp. 1427-1433 ◽  
Author(s):  
I. Roytelman ◽  
S.M. Shahidehpour

2015 ◽  
Vol 12 (17) ◽  
pp. 15223-15244
Author(s):  
M. L. Breeden ◽  
G. A. McKinley

Abstract. The North Atlantic is the most intense region of ocean CO2 uptake. Here, we investigate multidecadal timescale variability of the partial pressure CO2 (pCO2) that is due to the natural carbon cycle using a regional model forced with realistic climate and pre-industrial atmospheric pCO2 for 1948–2009. Large-scale patterns of natural pCO2 variability are primarily associated with basin-averaged sea surface temperature (SST) that, in turn, is composed of two parts: the Atlantic Multidecadal Oscillation (AMO) and a long-term positive SST trend. The North Atlantic Oscillation (NAO) drives a secondary mode of variability. For the primary mode, positive AMO and the SST trend modify pCO2 with different mechanisms and spatial patterns. Warming with the positive AMO increases subpolar gyre pCO2, but there is also a significant reduction of dissolved inorganic carbon (DIC) due primarily to reduced vertical mixing. The net impact of positive AMO is to reduce pCO2 in the subpolar gyre. Through direct impacts on SST, the net impacts of positive AMO is to increase pCO2 in the subtropical gyre. From 1980 to present, long-term SST warming has amplified AMO impacts on pCO2.


Sign in / Sign up

Export Citation Format

Share Document