scholarly journals Changes in peanut canopy structure and photosynthetic characteristics induced by an arbuscular mycorrhizal fungus in a nutrient-poor environment

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinli Bi ◽  
Huili Zhou

AbstractA well-developed canopy structure can increase the biomass accumulation and yield of crops. Peanut seeds were sown in a soil inoculated with an arbuscular mycorrhizal fungus (AMF) and uninoculated controls were also sown. Canopy structure was monitored using a 3-D laser scanner and photosynthetic characteristics with an LI-6400 XT photosynthesis system after 30, 45 and 70 days of growth to explore the effects of the AMF on growth, canopy structure and photosynthetic characteristics and yield. The AMF colonized the roots and AMF inoculation significantly increased the height, canopy width and total leaf area of the host plants and improved canopy structure. AMF reduced the tiller angle of the upper and middle canopy layers, increased that of the lower layer, reduced the leaf inclination of the upper, middle and lower layers, and increased the average leaf area and leaf area index after 45 days of growth, producing a well-developed and hierarchical canopy. Moreover, AMF inoculation increased the net photosynthetic rate in the upper, middle and lower layers. Plant height, canopy width, and total leaf area were positively correlated with net photosynthetic rate, and the inclination angle and tiller angle of the upper leaves were negatively correlated with net photosynthetic rate. Overall, the results demonstrate the effects of AMF inoculation on plant canopy structure and net photosynthetic rate.

2020 ◽  
Author(s):  
Yinli Bi ◽  
Zhou huili ◽  
Perer Christie

Abstract The effects of arbuscular mycorrhizal fungi (AMF) on peanut in a nutrient-poor environment were investigated by inoculating plants with AMF and comparing plant temporal growth responses to those of uninoculated control plants. As time passed AMF increased plant height, crown width and total leaf area, decreased the tiller angle of the middle and upper canopy, increased the tiller angle of the lower canopy, reduced leaf inclination angle, and increased average leaf area and leaf area index. In addition, AMF increased the net photosynthetic rate, promoted plant nutrient uptake and the development of the plant canopy, thereby increasing the accumulation and yield of substances.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sabaiporn Nacoon ◽  
Sanun Jogloy ◽  
Nuntavun Riddech ◽  
Wiyada Mongkolthanaruk ◽  
Jindarat Ekprasert ◽  
...  

AbstractIn this work, the effects of co-inoculation between an arbuscular mycorrhizal fungus (AMF) and a phosphate solubilizing bacteria (PSB) to promote the growth and production of sunchoke under field condition were investigated during 2016 and 2017. Four treatments were set up as follows: plants without inoculation, with AMF inoculation, with PSB inoculation and with co-inoculation of PSB and AMF. The results showed the presence of PSB and AMF colonization at the harvest stage in both years. This suggested the survival of PSB and successful AMF colonization throughout the experiments. According to correlation analysis, PSB positively affected AMF spore density and colonization rate. Also, both AMF and PSB positively correlated with growth and production of sunchoke. Co-inoculation could enhance various plant parameters. However, better results in 2016 were found in co-inoculation treatment, while AMF inoculation performed the best in 2017. All of these results suggested that our AMF and PSB could effectively promote growth and production of sunchoke under field conditions. Such effects were varied due to different environmental conditions each year. Note that this is the first study showing successful co-inoculation of AMF and PSB for promoting growth and yield of sunchoke in the real cultivation fields.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 186 ◽  
Author(s):  
Wei-Qin Gao ◽  
Li-Hui Lü ◽  
A. Srivastava ◽  
Qiang-Sheng Wu ◽  
Kamil Kuča

A potted experiment was carried out to evaluate the effect of an arbuscular mycorrhizal fungus (AMF), Acaulospora scrobiculata, on peach seedlings grown in non-replant (NR) and replant (R) soils, to establish whether AMF inoculation alleviated soil replant disease through changes in physiological levels and relevant gene expression. After 15 weeks of mycorrhization, root mycorrhizal colonization was heavily inhibited by R treatment versus NR treatment. AMF plants under NR and R soil conditions displayed significantly higher total plant biomass than non-AMF plants. AMF inoculation significantly increased root sucrose and fructose concentrations and root catalase, peroxidase, polyphenol oxidase, and phenylalanine ammonialyase activities under R conditions. Likewise, salicylic acid, jasmonic acid, chitinase, total soluble phenol, and lignin concentrations in roots were significantly higher in AMF than in non-AMF seedlings grown in R soil. Over-expression of PpCHI, PpLOX1, PpLOX5, PpAOC3, PpAOC4, and PpOPR2 in roots was observed in AMF-inoculated seedlings, as compared to that of non-AMF-inoculated seedlings grown in R soils. Thus, mycorrhizal fungal inoculation conferred a greater tolerance to peach plants in R soil by stimulating antioxidant enzyme activities, disease-resistance substance levels, and the expression of relevant genes.


2021 ◽  
Vol 50 (4) ◽  
pp. 1127-1132
Author(s):  
Wubo Li ◽  
Meng Li ◽  
Yunshuo Xu ◽  
Yan Shi

Effects of different dosages of potassium silicate fertilizer on photosynthetic characteristics and yield of winter wheat under field conditions were studied. Four different dosages: 0, 45, 90 and 135kg/ha were applied. Results showed that the chlorophyll content, net photosynthetic rate of wheat flag leaf firstly increased and then decreased with the increase of levels of potassium silicate fertilizer. By the change of SPAD values after flowering, when the application of potassium silicate fertilizer was 90 kg/ha, the existence time of chlorophyll in flag leaf was significantly long, and the net photosynthetic rate was significantly increased. The 1000-grain weight of winter wheat significantly increased and the yield the highest. Overall, when the applied amount of potassium silicate fertilizer was 90 kg/ha, the performances of winter wheat were best. Bangladesh J. Bot. 50(4): 1127-1132, 2021 (December)


2011 ◽  
Vol 23 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Elcio Liborio Balota ◽  
Oswaldo Machineski ◽  
Priscila Viviane Truber ◽  
Alexandra Scherer ◽  
Fabio Suano de Souza

The physic nut (Jatropha curcas L.) is a perennial tree that occurs naturally in the tropical and subtropical regions of Brazil. Fruits of physic nut present an oil content of 28% on a dry weight basis. Although the plant has adapted to diverse soil conditions such as low fertility, the correction of soil acidity and the addition of fertilizer are essential for highly productive plants. Thus, the response of the physic nut to different soil phosphorus levels (P) and arbuscular mycorrhizal fungi (AMF) inoculation must be characterized. Hence, the objective of the present study was to evaluate the response of physic nut seedlings to arbuscular mycorrhizal fungi (AMF) inoculation at different levels of soil P. Experiment was carried out in a greenhouse encompassing AMF treatments (inoculation with Gigaspora margarita or Glomus clarum, and the non inoculated controls), and phosphorus treatments (0, 25, 50, 100, 200 and 400 mg kg-1 added to soil). At low soil P levels, arbuscular mycorrhizal fungi inoculation had a significant positive effect on plant growth, shoot and root dry matter content, plant height, number of leaves, total leaf area, leaf area per leaf and the Dickson quality index. The root:shoot ratio and the leaf area ratio were also affected by mycorrhizal inoculation and the level of P addition. Physic nut plants exhibited high mycorrhizal dependency at soil P additions up to 50 mg kg-1.


1972 ◽  
Vol 78 (3) ◽  
pp. 509-511 ◽  
Author(s):  
Ian Rhodes

SUMMARYYield, critical LAI and apparent photosynthetic rate per unit leaf area were measured in four families selected from L. perenne S. 321. Differences in yield were attributable to differences in canopy structure producing differing critical LAI. The most productive family, which was 33% more productive than the base population, produced the largest critical LAI but had the lowest photosynthetic rate.


2021 ◽  
Vol 12 (1) ◽  
pp. 17-22
Author(s):  
Eva Proditus Sianturi ◽  
Budiman Budiman ◽  
Moh. Ega Elman Miska

Iler plant (Coleus artopurporeus L benth) is a plant that was originally cultivated as an ornamental plant and then developed as a medicinal plant because it contains flavonoids and anthocyanins. Drought stress is a major environmental problem that causes various changes in plant morphological, metabolic and physiological functions. Utilization of Arbuscular Mycorrhizal Fungi (AMF) is an effort to support the growth and development of iler plants in drought stress conditions. This study aims to determine the effect of AMF inoculation on the growth of iler plants under drought stress conditions, determine the optimal level of drought stress for ilher plant growth, and determine the best interaction between AMF inoculation and the level of drought stress on the growth of iler plants. The design used in this study was a completely randomized factorial 2-factor design. The first factor is AMF inoculation consisting of 2 levels, namely, without administration of AMF inoculum and AMF inoculum administration. The second factor is drought stress consists of 3 levels namely, 100% field capacity, 90% drought stress, and 45% drought stress. The results showed the effectiveness of the AMF inoculum test was able to increase the growth of iler plants based on parameters plant height, number of leaves, number of branches, leaf area, root length, root volume, root dry weight, number of spores and root infection. The optimal level of drought stress for iler plant growth is 90% drought stress, it is based on the parameters of plant height, number of leaves, number of branches, leaf area, root length, number of spores and root infection. There is the best interaction between AMF inoculation and 90% drought stress level on the growth of iler plants. These interactions can increase plant height, leaf area, number of spores and root infection. Keywords: arbuscular mycorrhizal fungi (FMA), drought stress, iler plants


1991 ◽  
Vol 9 (3) ◽  
pp. 163-167
Author(s):  
Stuart L. Warren ◽  
Frank A. Blazich ◽  
Mack Thetford

Abstract Uniconazole was applied as a foliar spray or medium drench to six woody landscape species: ‘Sunglow’ azalea; flame azalea; ‘Spectabilis’ forsythia; ‘Compacta’ holly; ‘Nellie R. Stevens’ holly; and mountain pieris. One hundred days after uniconazole application, leaf, stem, and top dry weight of all species, except flame azalea and mountain pieris, decreased as uniconazole concentration increased. Compared to controls, stem and leaf dry weight were reduced by uniconazole 18 to 60% and 13 to 32%, respectively, depending on species and method of application. Stem dry weight was reduced to a greater degree, compared to leaf dry weight. For all species, drench application was more effective than foliar spray in reducing leaf, stem, and top dry weight. Leaf area of ‘Spectabilis’ forsythia and ‘Nellie R. Stevens’ holly decreased with increasing rates. However, specific leaf weight was not affected. Uniconazole did not significantly affect leaf net photosynthetic rate, stomatal conductance or internal leaf CO2 concentrations in ‘Spectabilis’ forsythia or ‘Nellie R. Stevens’ holly. No phytotoxicity was observed on any species.


Weed Science ◽  
1976 ◽  
Vol 24 (1) ◽  
pp. 127-130 ◽  
Author(s):  
David T. Patterson

The response of net photosynthetic rate to temperature and light, the rate of photorespiration, the compensation concentration for CO2, and the pathway of CO2fixation in smooth pigweed (Amaranthus hybridusL.) were investigated using infrared gas analysis and14CO2. Maximum net photosynthetic rates of whole shoots were 45 mg CO2dm-2hr-1at 30 C and 7.8 klux. Intact whole shoots were not light saturated at 10 klux. The optimum temperature for net photosynthesis was between 30 C and 40 C. Photorespiration was low and the CO2compensation concentration was 7 ppm. After a 5-sec exposure to14CO2in the light, label was detected in oxaloacetate, malate, and aspartate. It was concluded that smooth pigweed has the gross photosynthetic characteristics and CO2fixation pathway typical of C4or Hatch-Slack plants.


Sign in / Sign up

Export Citation Format

Share Document