scholarly journals Influence of Drought on Foliar Water Uptake Capacity of Temperate Tree Species

Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 562 ◽  
Author(s):  
Jeroen D.M. Schreel ◽  
Jonas S. von der Crone ◽  
Ott Kangur ◽  
Kathy Steppe

Foliar water uptake (FWU) has been investigated in an increasing number of species from a variety of areas but has remained largely understudied in deciduous, temperate tree species from non-foggy regions. As leaf wetting events frequently occur in temperate regions, FWU might be more important than previously thought and should be investigated. As climate change progresses, the number of drought events is expected to increase, basically resulting in a decreasing number of leaf wetting events, which might make FWU a seemingly less important mechanism. However, the impact of drought on FWU might not be that unidirectional because drought will also cause a more negative tree water potential, which is expected to result in more FWU. It yet remains unclear whether drought results in a general increase or decrease in the amount of water absorbed by leaves. The main objectives of this study are, therefore: (i) to assess FWU-capacity in nine widely distributed key tree species from temperate regions, and (ii) to investigate the effect of drought on FWU in these species. Based on measurements of leaf and soil water potential and FWU-capacity, the effect of drought on FWU in temperate tree species was assessed. Eight out of nine temperate tree species were able to absorb water via their leaves. The amount of water absorbed by leaves and the response of this plant trait to drought were species-dependent, with a general increase in the amount of water absorbed as leaf water potential decreased. This relationship was less pronounced when using soil water potential as an independent variable. We were able to classify species according to their response in FWU to drought at the leaf level, but this classification changed when using drought at the soil level, and was driven by iso- and anisohydric behavior. FWU hence occurred in several key tree species from temperate regions, be it with some variability, which potentially allows these species to partly reduce the effects of drought stress. We recommend including this mechanism in future research regarding plant–water relations and to investigate the impact of different pathways used for FWU.

Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Charles A. King ◽  
Lawrence R. Oliver

Experiments were conducted to evaluate the influence of temperature and water potential on water uptake, germination, and emergence of large crabgrass in order to predict emergence in the field. Water uptake of seed soaked in polyethylene glycol solutions of 0 to −1400 kPa underwent an initial imbibition phase followed by a lag phase and subsequent increase in water content when radicles emerged from the seed. Maximum germination at 15 C was 12% at 0 kPa and 60% at 25 C at 0 to −200 kPa osmotic potential. In the growth chamber, large crabgrass emergence from soil began 2 to 3 d after planting at 30 or 35 C and within 9 to 10 d at 15 C. Maximum emergence of 77 % occurred at 25 C and at a soil water potential of −30 kPa. Emergence percentage decreased as water potential decreased or as temperature increased or decreased. A logistic equation described emergence of large crabgrass at each combination of temperature and soil water potential at which emergence occurred, and a predictive model was developed and validated by field data. In the field, there was little or no emergence at soil temperatures below 15 C or water potentials below −50 to −60 kPa. The model predicted the time of onset of large crabgrass emergence and the time to reach maximum emergence to within 2 to 4 d of that recorded in field experiments. The model also predicted the correct number of flushes of emergence occurring in the field in three of four experiments.


1989 ◽  
Vol 16 (5) ◽  
pp. 415 ◽  
Author(s):  
CR Jensen ◽  
IE Henson ◽  
NC Turner

Plants of Lupinus cosentinii Guss. cv. Eregulla were grown in a sandy soil in large containers in a glasshouse and exposed to drought by withholding water. Under these conditions stomatal closure had previously been shown to be initiated before a significant reduction in leaf water potential was detected. In the experiments reported here, no significant changes were found in water potential or turgor pressure of roots or leaves when a small reduction in soil water potential was induced which led to a 60% reduction in leaf conductance. The decrease in leaf conductance and root water uptake closely paralleled the fraction of roots in wet soil. By applying observed data of soil water and root characteristics, and root water uptake for whole pots in a single-root model, the average water potential at the root surface was calculated. Potential differences for water transport in the soil-plant system, and the resistances to water flow were estimated using the 'Ohm's Law' analogy for water transport. Soil resistance was negligible or minor, whereas the root resistance accounted for 61-72% and the shoot resistance accounted for about 30% of the total resistance. The validity of the measurements and calculations is discussed and the possible role of root- to-shoot communication raised.


1971 ◽  
Vol 51 (2) ◽  
pp. 211-220 ◽  
Author(s):  
S. J. YANG ◽  
E. DE JONG

Water uptake patterns of wheat plants were studied in a growth chamber by using two soils packed to three different bulk densities. The resistances to water movement in the soil and in the plant were calculated from the mathematical model for water uptake published in the literature. When the capillary potential of the soils was near −⅓ bar, withdrawal of water by plants was relatively small and most of the water was taken from the top 25 cm of the soil column. As soil water potential decreased, water uptake increased progressively toward the lower part of the soil column. The resistance to water movement in the plant increased from the top to the bottom of the root system and increased with increasing bulk density of the soils. For wet soils, unrealistic values were obtained which could be due to the fact that the interaction between aeration and moisture uptake is not taken into account in the theoretical equations for moisture uptake.


2012 ◽  
Vol 60 (2) ◽  
pp. 87 ◽  
Author(s):  
Mark J. Hovenden ◽  
Jacqueline K. Vander Schoor

Leaf form is closely related to local prevailing abiotic conditions and thus the morphology of fossil and sub-fossil leaves is often used to reconstruct both historical and palaeo-environmental conditions. However, palaeo-environmental reconstruction is difficult because leaf form is controlled potentially by many interacting environmental factors such as temperature, CO2 concentration, light and water availability. We used a glasshouse trial to investigate the impact of water availability on the leaf and cuticle morphology of a species important for palaeo-environmental reconstruction, the southern beech, Nothofagus cunninghamii. We found that reducing soil water potential to –0.2 or –0.5 MPa had no impact on leaf form or cuticular characters, despite reducing leaf carbon assimilation and severely restricting plant growth. Although plant accession affected many leaf characters, there were few significant impacts of altitude of origin and no substantial interactions between altitude of origin and soil water potential. Thus, both cuticular and gross leaf morphology seem to be stable across a range of soil water potentials in this species, meaning that palaeo-environmental signals from this species are unlikely to be affected by changes in water availability.


Soil Research ◽  
1981 ◽  
Vol 19 (1) ◽  
pp. 51 ◽  
Author(s):  
RP Samui ◽  
S Kar

The phasic and diurnal leaf water potential (�L) and transpirational responses to soil water potential by groundnut (Arachis hypogea L.) were investigated under controlled soil water conditions in a glasshouse. Three different soil water potentials (�s) in the tensiometric ranges were maintained in a lateritic sandy loam soil (Oxisol) during the seedling (S1), branching (S2) and peg formation (S3) stages of groundnut. Measured values of �s, �L rooting density, soil capillary conductivity and transpiration rate were used to calculate the soil and plant resistances to water uptake by the plant. The soil and plant resistances to water uptake by the groundnut plant increased appreciably as the soil water potential decreased from -0.11 to -0.70 bar. Plant resistance (Rp) was two to three orders of magnitude higher than soil resistance (Rs). Rs decreased with growth of the plant, whereas Rp increased, especially at -0.7 bar �s, Decreases in transpiration at �s lower than -0.33 bar were closely associated with the increases in the plant and soil resistances, and with lower leaf water potentials.


2020 ◽  
Vol 15 (3) ◽  
pp. 446-453
Author(s):  
Ashish Tewari

Water potential (predawn and mid day), water potential components (osmotic potential at full and zero turgor, relative water content), soil water potential and leaf conductance were measured for two adjacently growing tree species Shorea robusta Gaertn and Pinus roxburghii Sarg. at an elevation of 1370m. The stands were open and the density of S. robusta was 212 trees/ha and of P. roxburghii was 141trees/ha. Presence of high number of saplings indicates both the species were regenerating well in the site despite human disturbance. S. robusta maintained relatively high predawn water potential even in summers (above -0.50MPa) and P. roxburghii showed low predawn water potential in early summer and summer season (above-1.4 MPa). P. roxburghii maintained a relatively small daily change in water potential during early summer and summer season (0.33MPa and 0.27MPa) indicating greater ability of the species to close its stomata as drought intensifies. The values of osmotic potential at full and zero turgor remained more or less constant for S. robusta from monsoon to winter and then declined during early summer. P. roxburghii showed a gradual decline in osmotic potential values from monsoon to winter season. Chir-pine has the ability of invade and grow on sites that are water stressed which can be related to its capacity to show high osmotic adjustment.. The most negative values of soil water potential were in early summer in both years. The morning and afternoon conductance was lowest during early summer and highest in autumn season.


1986 ◽  
Vol 58 (4) ◽  
pp. 185-190 ◽  
Author(s):  
Markku Tenhovuori

The time for 50 % emergence of wheat and barley increases linearly with decreasing matric potential. This increase actually begins at matric pressures above pF 2.7. The rise in temperature makes emergence faster with in the range of minimum temperature (3.1°C for wheat and 1.9°C for barley) and the temperature where growth begins to slow down(about 31°C for wheat and 27°C for barley).The optimum range for 50 % emergence was obtained at a matric pressure range of pF 1.3—2.7 or —5.0— —0.20 m (water column) at a temperature of 10°C, which quite well corresponds to the situation in Finland during the emergence period in spring. A clear increase can be observed in the required heat sum for wheat and barley when the soil water potential reaches a critical point which was pF 2.8 or—6.3m for wheat and pF 2.7 or —5.0 m for barley. The total emergence as a function of matric potential for wheat and barley was determined over a period of 30 days at 10°C. In the wet side, pF 1,0 can be considered a limit, the total emergence decreasing with lower values. In the dry side, a corresponding decrease can be noticed in total emergence at pF above 3.0. The water uptake by seeds speeded up with increasing temperature from 10 to 25°C. Radicles of wheat and barley began to appear when the water uptake by the seed was approximately 50—60 % of the initial weight of the seed. The initial water uptake caused by the moistening of the pericarp due to capillarity was about 3 % for wheat and 5 % for barley at a soil water potential of pF 1.2.


2016 ◽  
Vol 64 (3) ◽  
pp. 246-251 ◽  
Author(s):  
Jaroslav Vido ◽  
Katarína Střelcová ◽  
Paulína Nalevanková ◽  
Adriana Leštianska ◽  
Radoslav Kandrík ◽  
...  

AbstractThe paper presents relationship between the Standardised Precipitation Index (SPI) and physiological responses of individual trees in a beech stand using an example of an experimental plot in Bienska valley (Zvolen, Slovakia). SPI is a widely used tool for monitoring both short-term and long-term droughts, and for the assessments of drought impacts on agriculture. Due to the complex ecosystem bonds, monitoring of drought in forests often requires a sophisticated technological approach. The aim of the paper was to correlate the SPI on the physiological responses of trees that were recorded during the performed physiological research (sap flow, and stem circumference increment) at the site in the growing seasons (May to September) of the years 2012-2014. The results revealed a relationship between the index and the physiological responses, although the problem with the impact of other environmental factors has also come up. The secondary correlation, in which soil water potential that significantly affects physiological responses of forest tree species was used as a dependent variable, showed a tighter relationship with the SPI. We found the highest correlation between the soil water potential and the values of SPI aggregated for five weeks. This indicates that the beech forest has a five week resistance to drought stress. The results also enable simple monitoring of the initiation of the drought stress by applying SPI for five weeks.


1998 ◽  
Vol 2 (1) ◽  
pp. 31-39 ◽  
Author(s):  
J.-P. Lhomme

Abstract. The withdrawal of water from soil by vegetation, which in steady state conditions is equivalent to the transpiration rate, can be written in terms of water potential in the form of an Ohm's law analogy, known as van den Honert's equation: The difference between an effective soil water potential and the bulk canopy water potential is divided by an effective soil-plant resistance. This equation is commonly used, but little is known about the precise definition of its parameters. The issue of this paper is to bridge the gap between the bulk approach and a multi-layer description of soil-plant water transfer by interpreting the bulk parameters in terms of the characteristics of the multi-layer approach. Water flow through an elementary path within the soil or the root is assumed to follow an Ohm's law analogy, and the soil and root characterisics are allowed to vary with depth. Starting from the basic equations of the multi-layer approach, it is proved that the total rate of transpiration can also be expressed in the form of an Ohm's law analogy. This means that van den Honert's equation holds at canopy scale, insofar as the assumptions made on the physics of root water uptake hold. In the bulk formulation derived, the effective soil-plant resistance appears as a combination of the elementary resistances making up the multi-layer model; and the effective soil water potential is a weighted mean of the water potentials in each soil layer, the weighting system involving the complete set of elementary resistances. Simpler representations of soil-plant interaction leading to Ohm's law type formulations are also examined: a simplified multi-layer model, in which xylem (root axial) resistance is neglected, and a bulk approach, in which soil-root interaction is represented by only one layer. Numerical simulations performed in different standard conditions show that these simpler representations do not provide accurate estimates of the transpiration rate, when compared to the values obtained by the complete algorithm.


1979 ◽  
Vol 71 (6) ◽  
pp. 980-982 ◽  
Author(s):  
L. G. Heatherly ◽  
W. J. Russell

Sign in / Sign up

Export Citation Format

Share Document