scholarly journals Development and Testing of a New Ground Measurement Tool to Assist in Forest GIS Surveys

Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 643 ◽  
Author(s):  
Guangpeng Fan ◽  
Feixiang Chen ◽  
Yan Li ◽  
Binbin Liu ◽  
Xu Fan

In present forest surveys, some problems occur because of the cost and time required when using external tools to acquire tree measurement. Therefore, it is of great importance to develop a new cost-saving and time-saving ground measurement method implemented in a forest geographic information system (GIS) survey. To obtain a better solution, this paper presents the design and implementation of a new ground measurement tool in which mobile devices play a very important role. Based on terrestrial photogrammetry, location-based services (LBS), and computer vision, the tool assists forest GIS surveys in obtaining important forest structure factors such as tree position, diameter at breast height (DBH), tree height, and tree species. This paper selected two plots to verify the accuracy of the ground measurement tool. Experiments show that the root mean square error (RMSE) of the position coordinates of the trees was 0.222 m and 0.229 m, respectively, and the relative root mean square error (rRMSE) was close to 0. The rRMSE of the DBH measurement was 10.17% and 13.38%, and the relative Bias (rBias) of the DBH measurement was −0.88% and −2.41%. The rRMSE of tree height measurement was 6.74% and 6.69%, and the rBias of tree height measurement was −1.69% and −1.27%, which conforms to the forest investigation requirements. In addition, workers usually make visual observations of trees and then combine their personal knowledge or experience to identify tree species, which may lead to the situations when they cannot distinguish tree species due to insufficient knowledge or experience. Based on MobileNets, a lightweight convolutional neural network designed for mobile phone, a model was trained to assist workers in identifying tree species. The dataset was collected from some forest parks in Beijing. The accuracy of the tree species recognition model was 94.02% on a test dataset and 93.21% on a test dataset in the mobile phone. This provides an effective reference for workers to identify tree species and can assist in artificial identification of tree species. Experiments show that this solution using the ground measurement tool saves time and cost for forest resources GIS surveys.

2018 ◽  
Vol 10 (11) ◽  
pp. 1845 ◽  
Author(s):  
Yongxiang Fan ◽  
Zhongke Feng ◽  
Abdul Mannan ◽  
Tauheed Khan ◽  
Chaoyong Shen ◽  
...  

Accurate estimation of tree position, diameter at breast height (DBH), and tree height measurements is an important task in forest inventory. Mobile Laser Scanning (MLS) is an important solution. However, the poor global navigation satellite system (GNSS) coverage under the canopy makes the MLS system unable to provide globally-consistent point cloud data, and thus, it cannot accurately estimate the forest attributes. SLAM could be an alternative for solutions dependent on GNSS. In this paper, a mobile phone with RGB-D SLAM was used to estimate tree position, DBH, and tree height in real-time. The main aims of this paper include (1) designing an algorithm to estimate the DBH and position of the tree using the point cloud from the time-of-flight (TOF) camera and camera pose; (2) designing an algorithm to measure tree height using the perspective projection principle of a camera and the camera pose; and (3) showing the measurement results to the observer using augmented reality (AR) technology to allow the observer to intuitively judge the accuracy of the measurement results and re-estimate the measurement results if needed. The device was tested in nine square plots with 12 m sides. The tree position estimations were unbiased and had a root mean square error (RMSE) of 0.12 m in both the x-axis and y-axis directions; the DBH estimations had a 0.33 cm (1.78%) BIAS and a 1.26 cm (6.39%) root mean square error (RMSE); the tree height estimations had a 0.15 m (1.08%) BIAS and a 1.11 m (7.43%) RMSE. The results showed that the mobile phone with RGB-D SLAM is a potential tool for obtaining accurate measurements of tree position, DBH, and tree height.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1020
Author(s):  
Yanqi Dong ◽  
Guangpeng Fan ◽  
Zhiwu Zhou ◽  
Jincheng Liu ◽  
Yongguo Wang ◽  
...  

The quantitative structure model (QSM) contains the branch geometry and attributes of the tree. AdQSM is a new, accurate, and detailed tree QSM. In this paper, an automatic modeling method based on AdQSM is developed, and a low-cost technical scheme of tree structure modeling is provided, so that AdQSM can be freely used by more people. First, we used two digital cameras to collect two-dimensional (2D) photos of trees and generated three-dimensional (3D) point clouds of plot and segmented individual tree from the plot point clouds. Then a new QSM-AdQSM was used to construct tree model from point clouds of 44 trees. Finally, to verify the effectiveness of our method, the diameter at breast height (DBH), tree height, and trunk volume were derived from the reconstructed tree model. These parameters extracted from AdQSM were compared with the reference values from forest inventory. For the DBH, the relative bias (rBias), root mean square error (RMSE), and coefficient of variation of root mean square error (rRMSE) were 4.26%, 1.93 cm, and 6.60%. For the tree height, the rBias, RMSE, and rRMSE were—10.86%, 1.67 m, and 12.34%. The determination coefficient (R2) of DBH and tree height estimated by AdQSM and the reference value were 0.94 and 0.86. We used the trunk volume calculated by the allometric equation as a reference value to test the accuracy of AdQSM. The trunk volume was estimated based on AdQSM, and its bias was 0.07066 m3, rBias was 18.73%, RMSE was 0.12369 m3, rRMSE was 32.78%. To better evaluate the accuracy of QSM’s reconstruction of the trunk volume, we compared AdQSM and TreeQSM in the same dataset. The bias of the trunk volume estimated based on TreeQSM was −0.05071 m3, and the rBias was −13.44%, RMSE was 0.13267 m3, rRMSE was 35.16%. At 95% confidence interval level, the concordance correlation coefficient (CCC = 0.77) of the agreement between the estimated tree trunk volume of AdQSM and the reference value was greater than that of TreeQSM (CCC = 0.60). The significance of this research is as follows: (1) The automatic modeling method based on AdQSM is developed, which expands the application scope of AdQSM; (2) provide low-cost photogrammetric point cloud as the input data of AdQSM; (3) explore the potential of AdQSM to reconstruct forest terrestrial photogrammetric point clouds.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 696 ◽  
Author(s):  
Martin Mokroš ◽  
Jozef Výbošťok ◽  
Julián Tomaštík ◽  
Alžbeta Grznárová ◽  
Peter Valent ◽  
...  

Close-range photogrammetry (CRP) can be used to provide precise and detailed three-dimensional data of objects. For several years, CRP has been a subject of research in forestry. Several studies have focused on tree reconstruction at the forest stand, plot, and tree levels. In our study, we focused on the reconstruction of trees separately within the forest stand. We investigated the influence of camera lens, tree species, and height of diameter on the accuracy of the tree perimeter and diameter estimation. Furthermore, we investigated the variance of the perimeter and diameter reference measurements. We chose four tree species (Fagus sylvatica L., Quercus petraea (Matt.) Liebl., Picea abies (L.) H. Karst. and Abies alba Mill.). The perimeters and diameters were measured at three height levels (0.8 m, 1.3 m, and 1.8 m) and two types of lenses were used. The data acquisition followed a circle around the tree at a 3 m radius. The highest accuracy of the perimeter estimation was achieved when a fisheye lens was used at a height of 1.3 m for Fagus sylvatica (root mean square error of 0.25 cm). Alternatively, the worst accuracy was achieved when a non-fisheye lens was used at 1.3 m for Quercus petraea (root mean square error of 1.27 cm). The tree species affected the estimation accuracy for both diameters and perimeters.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1233
Author(s):  
Yongbin Meng ◽  
Yuanyuan Zhang ◽  
Chunxu Li ◽  
Jinghan Zhao ◽  
Zichun Wang ◽  
...  

This study aimed to measure the carbon content of tree species rapidly and accurately using visible and near-infrared (Vis-NIR) spectroscopy coupled with chemometric methods. Currently, the carbon content of trees used for calculating the carbon storage of forest trees in the study of carbon sequestration is obtained by two methods. One involves measuring carbon content in the laboratory (K2CrO7-H2SO4 oxidation method or elemental analyzer), and another involves directly using the IPCC (Intergovernmental Panel on Climate Change) default carbon content of 0.45 or 0.5. The former method is destructive, time-consuming, and expensive, while the latter is subjective. However, Vis-NIR detection technology can avoid these shortcomings and rapidly determine carbon content. In this study, 96 increment core samples were collected from six tree species in the Heilongjiang province of China for analysis. The spectral data were preprocessed using seven methods, including extended multiplicative scatter correction (EMSC), first derivative (1D), second derivative (2D), baseline correction, de-trend, orthogonal signal correction (OSC), and normalization to eliminate baseline drifting and noise, as well as to enhance the model quality. Linear models were established from the spectra using partial least squares regression (PLS). At the same time, we also compared the effects of full-spectrum and reduced spectrum on the model’s performance. The results showed that the spectral data processed by 1D with the full spectrum could obtain a better prediction model. The 1D method yielded the highest R2c of 0.92, an RMSEC (root-mean-square error of calibration) of 0.0056, an R2p of 0.99, an RMSEP (root-mean-square error of prediction) of 0.0020, and the highest RPD (residual prediction deviation) value of 8.9. The results demonstrate the feasibility of Vis-NIR spectroscopy coupled with chemometric methods in determining the carbon content of tree species as a simple, rapid, and non-destructive method.


2018 ◽  
Vol 41 (3) ◽  
Author(s):  
Daniel Henrique Breda Binoti ◽  
Paulo Junio Duarte ◽  
Mayra Luiza Marques da Silva ◽  
Gilson Fernandes da Silva ◽  
Helio Garcia Leite ◽  
...  

ABSTRACT The aim of this study was to evaluate the method of neuroevolution of augmenting topologies (NEAT) to adjust the weights and the topology of artificial neural networks (ANNs) in the estimation of tree height in a clonal population of eucalyptus, and compare with estimates obtained by a hypsometric regression model. To estimate the total tree height (Ht), the RNAs and the regression model, we used as variables a diameter of 1.3 m height (dbh) and the dominant height (Hd). The RNAs were adjusted and applied to the computer system NeuroForest, varying the size of the initial population (the genetic algorithm parameter) and the density of initial connections. Estimates of the total height of the trees obtained with the use of RNA and the regression model were evaluated based on the correlation coefficient, the percentage of errors scatter plot, the percentage frequency histogram of percentage errors, and the root mean square error (root mean square error - RMSE). Various settings which resulted in superior statistics to the hypsometric regression model were found. Connections had the highest correlation and the lowest RMSE% with a population size value of 300 and an initial density of 0.1 RNA. The NEAT methodology proved effective in estimating the height of trees in clonal population of eucalyptus.


2021 ◽  
Vol 13 (9) ◽  
pp. 1630
Author(s):  
Yaohui Zhu ◽  
Guijun Yang ◽  
Hao Yang ◽  
Fa Zhao ◽  
Shaoyu Han ◽  
...  

With the increase in the frequency of extreme weather events in recent years, apple growing areas in the Loess Plateau frequently encounter frost during flowering. Accurately assessing the frost loss in orchards during the flowering period is of great significance for optimizing disaster prevention measures, market apple price regulation, agricultural insurance, and government subsidy programs. The previous research on orchard frost disasters is mainly focused on early risk warning. Therefore, to effectively quantify orchard frost loss, this paper proposes a frost loss assessment model constructed using meteorological and remote sensing information and applies this model to the regional-scale assessment of orchard fruit loss after frost. As an example, this article examines a frost event that occurred during the apple flowering period in Luochuan County, Northwestern China, on 17 April 2020. A multivariable linear regression (MLR) model was constructed based on the orchard planting years, the number of flowering days, and the chill accumulation before frost, as well as the minimum temperature and daily temperature difference on the day of frost. Then, the model simulation accuracy was verified using the leave-one-out cross-validation (LOOCV) method, and the coefficient of determination (R2), the root mean square error (RMSE), and the normalized root mean square error (NRMSE) were 0.69, 18.76%, and 18.76%, respectively. Additionally, the extended Fourier amplitude sensitivity test (EFAST) method was used for the sensitivity analysis of the model parameters. The results show that the simulated apple orchard fruit number reduction ratio is highly sensitive to the minimum temperature on the day of frost, and the chill accumulation and planting years before the frost, with sensitivity values of ≥0.74, ≥0.25, and ≥0.15, respectively. This research can not only assist governments in optimizing traditional orchard frost prevention measures and market price regulation but can also provide a reference for agricultural insurance companies to formulate plans for compensation after frost.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1460
Author(s):  
Jinming Liu ◽  
Changhao Zeng ◽  
Na Wang ◽  
Jianfei Shi ◽  
Bo Zhang ◽  
...  

Biochemical methane potential (BMP) of anaerobic co-digestion (co-AD) feedstocks is an essential basis for optimizing ratios of materials. Given the time-consuming shortage of conventional BMP tests, a rapid estimated method was proposed for BMP of co-AD—with straw and feces as feedstocks—based on near infrared spectroscopy (NIRS) combined with chemometrics. Partial least squares with several variable selection algorithms were used for establishing calibration models. Variable selection methods were constructed by the genetic simulated annealing algorithm (GSA) combined with interval partial least squares (iPLS), synergy iPLS, backward iPLS, and competitive adaptive reweighted sampling (CARS), respectively. By comparing the modeling performances of characteristic wavelengths selected by different algorithms, it was found that the model constructed using 57 characteristic wavelengths selected by CARS-GSA had the best prediction accuracy. For the validation set, the determination coefficient, root mean square error and relative root mean square error of the CARS-GSA model were 0.984, 6.293 and 2.600, respectively. The result shows that the NIRS regression model—constructed with characteristic wavelengths, selected by CARS-GSA—can meet actual detection requirements. Based on a large number of samples collected, the method proposed in this study can realize the rapid and accurate determination of the BMP for co-AD raw materials in biogas engineering.


2008 ◽  
Vol 54 (No. 1) ◽  
pp. 9-16
Author(s):  
R. Petráš ◽  
J. Mecko ◽  
V. Nociar

The results obtained in research on the quality of raw timber by means of the structure of assortments for the stands of poplar clones Robusta and I-214 are presented in the paper. Models for an estimation of the structure of basic assortments of poplar stands were constructed separately for each clone in dependence on mean diameter, quality of stems, and damage to stems in the stand. The clone Robusta has higher proportions of higher-quality assortments than the clone I-214. The accuracy of models was determined on empirical material. It was confirmed by statistical tests that the models did not have a systematic error. The relative root mean-square error for main assortments of the clone I-214 is 15–27% and Robusta 13–24%.


Sign in / Sign up

Export Citation Format

Share Document