scholarly journals Estimation of Fungal Diversity and Identification of Major Abiotic Drivers Influencing Fungal Richness and Communities in Northern Temperate and Boreal Quebec Forests

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1096 ◽  
Author(s):  
Laperriere Genevieve ◽  
Chagnon Pierre-Luc ◽  
Giguère-Tremblay Roxanne ◽  
Morneault Amélie ◽  
Bisson Danny ◽  
...  

Fungi play important roles in forest ecosystems and understanding fungal diversity is crucial to address essential questions about species conservation and ecosystems management. Changes in fungal diversity can have severe impacts on ecosystem functionality. Unfortunately, little is known about fungal diversity in northern temperate and boreal forests, and we have yet to understand how abiotic variables shape fungal richness and composition. Our objectives were to make an overview of the fungal richness and the community composition in the region and identify their major abiotic drivers. We sampled 262 stands across the northern temperate and boreal Quebec forest located in the region of Abitibi-Témiscamingue, Mauricie, and Haute-Mauricie. At each site, we characterized fungal composition using Illumina sequencing, as well as several potential abiotic drivers (e.g., humus thickness, soil pH, vegetation cover, etc.). We tested effects of abiotic drivers on species richness using generalized linear models, while difference in fungal composition between stands was analyzed with permutational multivariate analysis of variance and beta-diversity partitioning analyses. Fungi from the order Agaricales, Helotiales, and Russulales were the most frequent and sites from the north of Abitibi-Témiscamingue showed the highest OTUs (Operational Taxonomic Unit) richness. Stand age and moss cover were the best predictors of fungal richness. On the other hand, the strongest drivers of fungal community structure were soil pH, average cumulative precipitation, and stand age, although much of community variance was left unexplained in our models. Overall, our regional metacommunity was characterized by high turnover rate, even when rare OTUs were removed. This may indicate strong environmental filtering by several unmeasured abiotic filters, or stronger than expected dispersal limitations in soil fungal communities. Our results show how difficult it can be to predict fungal community assembly even with high replication and efforts to include several biologically relevant explanatory variables.

1992 ◽  
Vol 24 (2) ◽  
pp. 165-180
Author(s):  
M. Hyvärinen ◽  
P. Halonen ◽  
M. Kauppi

Abstract The epiphytic lichen vegetation on the trunks of Pinus sylvestris and Picea abies was studied and analysed by canonical correspondence analysis in relation to a number of environmental variables. The distribution and abundance of epiphytic lichen species proved to be dependent on the age of the stand, showing divergent responses in relation to phorophyte species and environmental variables such as acidity of the bark and vertical location on the trunk. The importance of stand age in the pattern of community variation is concluded to be an outcome of interaction between changes in the structure of the tree canopy, microclimate and properties of the bark. The responses of single lichen species to changes in the environment seem to vary considerably, indicating differences in competitive ability and ecological strategy between the species.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 309 ◽  
Author(s):  
Iván Franco-Manchón ◽  
Kauko Salo ◽  
Juan Oria-de-Rueda ◽  
José Bonet ◽  
Pablo Martín-Pinto

Natural forests and plantations of Pinus are ecologically and economically important worldwide, producing an array of goods and services, including the provision of non-wood forest products. Pinus species play an important role in Mediterranean and boreal forests. Although Pinus species seem to show an ecological adaptation to recurrent wildfires, a new era of mega fires is predicted, owing to climate changes associated with global warming. As a consequence, fungal communities, which are key players in forest ecosystems, could be strongly affected by these wildfires. The aim of this study was to observe the fungal community dynamics, and particularly the edible fungi, in maritime (Pinus pinaster Ait.), austrian pine (Pinus nigra J.F. Arnold), and scots pine (Pinus sylvestris L.) forests growing under wet Mediterranean, dry Mediterranean, and boreal climatic conditions, respectively, by comparing the mushrooms produced in severely burned Pinus forests in each area. Sporocarps were collected during the main sampling campaigns in non-burned plots, and in burned plots one year and five years after fire. A total of 182 taxa, belonging to 81 genera, were collected from the sampled plots, indicating a high level of fungal diversity in these pine forests, independent of the climatic conditions. The composition of the fungal communities was strongly affected by wildfire. Mycorrhizal taxa were impacted more severely by wildfire than the saprotrophic taxa, particularly in boreal forests—no mycorrhizal taxa were observed in the year following fire in boreal forests. Based on our observations, it seems that fungal communities of boreal P. sylvestris forests are not as adapted to high-intensity fires as the Mediterranean fungal communities of P. nigra and P. pinaster forests. This will have an impact on reducing fungal diversity and potential incomes in rural economically depressed areas that depend on income from foraged edible fungi, one of the most important non-wood forest products.


2008 ◽  
Vol 140 (4) ◽  
pp. 453-474 ◽  
Author(s):  
David W. Langor ◽  
H.E. James Hammond ◽  
John R. Spence ◽  
Joshua Jacobs ◽  
Tyler P. Cobb

AbstractSaproxylic insect assemblages inhabiting dead wood in Canadian forests are highly diverse and variable but quite poorly understood. Adequate assessment of these assemblages poses significant challenges with respect to sampling, taxonomy, and analysis. Their assessment is nonetheless critical to attaining the broad goals of sustainable forest management because such species are disproportionately threatened elsewhere by the reductions in dead wood generally associated with commercial exploitation of northern forests. The composition of the saproxylic fauna is influenced by many factors, including tree species, degree of decay, stand age, and cause of tree death. Wildfire and forest harvesting have differential impacts on saproxylic insect assemblages and on their recovery in postdisturbance stands. Exploration of saproxylic insect responses to variable retention harvesting and experimental burns is contributing to the development of prescriptions for conserving saproxylic insects in boreal forests. Understanding of processes that determine diversity patterns and responses of saproxylic insects would benefit from increased attention to natural history. Such work should aim to provide a habitat-classification system for dead wood to better identify habitats (and associated species) at risk as a result of forest management. This tool could also be used to improve strategies to better maintain saproxylic organisms and their central nutrient-cycling functions in managed forests.


2020 ◽  
Author(s):  
Shashank Gupta ◽  
Mathis H. Hjelmsø ◽  
Jenni Lehtimäki ◽  
Xuanji Li ◽  
Martin Steen Mortensen ◽  
...  

Abstract Background From early life children are exposed to a multitude of environmental exposures, which may be of crucial importance for a healthy development. Here, the environmental microbiota may be of particular interest as it represents the interface between environmental factors and the child. As infants in modern societies spend a considerable amount of time indoors, we hypothesize that the indoor bed dust microbiota might be an important factor for the child and for the colonization of the early airway microbiome. To explore this hypothesis, we analysed the influence of environmental exposures on 577 dust samples from children’s beds (age 6 months) together with 542 airway samples (age 3 months) from the Copenhagen Prospective Studies on Asthma in Childhood 2010 cohort. Results The bed dust and airway microbiota were both profiled with bacterial amplicon sequencing while also fungal community was profiled from bed dust. Bacterial and fungal diversity in the dust was positively correlated. We observed that bacterial bed dust microbiota was influenced by multiple environmental factors, such as type of home (house or apartment), rural or urban living environment and pets (cat and/or dog), whereas fungal bed dust microbiota was majorly influenced by the sampling season. We further observed minor associations between bed dust and airway microbiota compositions among infants, but no evidence of transfer of individual taxa between the two departments. Conclusions Our finding demonstrate that bed dust microbiota is influenced by environmental exposures and could represent an interface between environment and child.


Author(s):  
Wei Fu ◽  
Baodong Chen ◽  
Matthias Rillig ◽  
Wang Ma ◽  
Chong Xu ◽  
...  

Mutualistic associations between plants and arbuscular mycorrhizal (AM) fungi may have profound influences on their response to climate changes. Existing theories evaluate the effects of interdependency and environmental filtering on plant-AM fungal community dynamics separately; however, abrupt environmental changes such as climate extremes can provoke duo-impacts on the metacommunity simultaneously. Here, we experimentally tested the relevance of plant and AM fungal community responses to extreme drought (chronic or intense) in a cold temperate grassland. Irrespective of drought intensities, plant species richness and productivity responses were significantly and positively correlated with AM fungal richness and also served as best predictors of AM fungal community shifts. Notably, the robustness of this community synergism increased with drought intensity, likely reflecting increased community interdependence. Network analysis showed a key role of Glomerales in AM fungal interaction with plants, suggesting specific plant-AM fungal pairing. Thus, community interdependence may underpin climate change impact on plant-AM fungal diversity patterns in grasslands.


Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 324
Author(s):  
Brianna K. Almeida ◽  
Michael S. Ross ◽  
Susana L. Stoffella ◽  
Jay P. Sah ◽  
Eric Cline ◽  
...  

Fungi play prominent roles in ecosystem services (e.g., nutrient cycling, decomposition) and thus have increasingly garnered attention in restoration ecology. However, it is unclear how most management decisions impact fungal communities, making it difficult to protect fungal diversity and utilize fungi to improve restoration success. To understand the effects of restoration decisions and environmental variation on fungal communities, we sequenced soil fungal microbiomes from 96 sites across eight experimental Everglades tree islands approximately 15 years after restoration occurred. We found that early restoration decisions can have enduring consequences for fungal communities. Factors experimentally manipulated in 2003–2007 (e.g., type of island core) had significant legacy effects on fungal community composition. Our results also emphasized the role of water regime in fungal diversity, composition, and function. As the relative water level decreased, so did fungal diversity, with an approximately 25% decline in the driest sites. Further, as the water level decreased, the abundance of the plant pathogen–saprotroph guild increased, suggesting that low water may increase plant-pathogen interactions. Our results indicate that early restoration decisions can have long-term consequences for fungal community composition and function and suggest that a drier future in the Everglades could reduce fungal diversity on imperiled tree islands.


2019 ◽  
Vol 7 (11) ◽  
pp. 505 ◽  
Author(s):  
Katarína Ondreičková ◽  
Marcela Gubišová ◽  
Michaela Piliarová ◽  
Miroslav Horník ◽  
Pavel Matušinský ◽  
...  

Due to the increasing sewage sludge production in the world and problems with its disposal, an application of sludge to the soil appears to be a suitable solution considering its fertilizer properties and ability to improve the soil physical conditions. On the other hand, the sludge may also contain undesirable and toxic substances. Since soil microorganisms are sensitive to environmental changes, they can be used as indicators of soil quality. In this study, we used sewage sludge (SS) from two municipal wastewater treatment plants (SS-A and SS-B) in the dose of 5 t/ha and 15 t/ha in order to determine possible changes in the fungal community diversity, especially arbuscular mycorrhizal fungi (AMF), in the rhizosphere of Arundo donax L. Rhizosphere samples were collected in summer and autumn for two consecutive years and the fungal diversity was examined using terminal restriction fragment length polymorphism and 18S rDNA sequencing. Fungal alpha diversity was more affected by SS-A than SS-B probably due to the higher heavy metal content. However, based on principal component analysis and ANOSIM, significant changes in overall fungal diversity were not observed. Simultaneously, 18S rDNA sequencing showed that more various fungal taxa were detected in the sample with sewage sludge than in the control. Glomus sp. as a representative of AMF was the most represented. Moreover, Funneliformis in both samples and Rhizophagus in control with Septoglomus in the sludge sample were other representatives of AMF. Our results indicate that the short-term sewage sludge application into the soil does not cause a shift in the fungal community composition.


2012 ◽  
Vol 52 ◽  
pp. 21-28 ◽  
Author(s):  
Mizue Ohashi ◽  
Timo Domisch ◽  
Leena Finér ◽  
Martin F. Jurgensen ◽  
Liselotte Sundström ◽  
...  

2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Xiaoliang Jiang ◽  
Wenzhi Liu ◽  
Lunguang Yao ◽  
Guihua Liu ◽  
Yuyi Yang

ABSTRACT The relative importance of local environments and dispersal limitation in shaping denitrifier community structure remains elusive. Here, we collected soils from 36 riverine, lacustrine and palustrine wetland sites on the remote Tibetan Plateau and characterized the soil denitrifier communities using high-throughput amplicon sequencing of the nirS and nirK genes. Results showed that the richness of nirS-type denitrifiers in riverine wetlands was significantly higher than that in lacustrine wetlands but not significantly different from that in palustrine wetlands. There was no clear distinction in nir community composition among the three kinds of wetlands. Irrespective of wetland type, the soil denitrification rate was positively related to the abundance, but not the α-diversity, of denitrifying communities. Soil moisture, carbon availability and soil temperature were the main determinants of diversity [operational taxonomic unit (OTU) number] and abundance of thenirS-type denitrifier community, while water total organic carbon, soil NO3– and soil moisture were important in controlling nirK-type denitrifier diversity and abundance. The nirS community composition was influenced by water electrical conductivity, soil temperature and water depth, while the nirK community composition was affected by soil electrical conductivity. Spatial distance explained more variation in the nirS community composition than in the nirK community composition. Our findings highlight the importance of both environmental filtering and spatial distance in explaining diversity and biogeography of soil nir communities in remote and relatively undisturbed wetlands.


Sign in / Sign up

Export Citation Format

Share Document